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NOMENCLATURE

matrix of blade-on-blade influence coefficients

local area of cross-section of finite element

Hessian matrix approximation constructed according to Egs. (5-16) and
(5-17) -

matrix quantities defined in Eqgs. (4-14)

sectional 2D lift coefficient

maximum sectional 2D lift coefficient

thrust coefficient, T/pantR2(QR)2

torque coefficient, P/panR3(QR)2

vector of design variables, { di }T

Young’s modulus

nodal force vector

body force vector due to blade rotation, {fx , fy , fz} T, defined in Eq. (4-
20) '

vector of acrodynamic force per unit length, { ti , f?, , f; }T along local x,

y, and z axes.

nodal force vector due to aerodynamic loads

nodal force vector due to blade rotation

integrated force vector, {Fx, Fy, Fz}T, due to blade rotation defined in Eq.
(4-23a)

inequality and equality constraint respectively

shear modulus

unit vectors in XYZ coordinates

set of design variables

set of holonomic constraints

objective (cost) function

multi-objective cost function and single objective cost function
respectively

set of active constraints

finite element stiffness matrix

contribution of material stiffness properties to K

fraction of blade radius from peak circulation to blade tip
contribution of distributed centrifugal forces to K
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u, VvV, W

contribution of geometric stiffening to K

length of finite element

Lagrangian defined in Eq. (5-12)

lower bound imposed upon state variable, X;

no. of constraints ( = mj + me)

moment vector about elastic axis due to blade rotation defined in Eq.
(4-22)

integrated moment vector, {Mx, My, M;}T, duc to blade rotation defined
in Eq. (4-23b)

vector of aerodynamic moment per unit length, { nf: , m; ) m: }T, along

local x, y, and z axes.

no. of inequality and equality constraints respectively

dimension of the state vector, X

power

power arising from induced drag and profile drag respectively
optimization step

vector of generalized finite element nodal deformations

dynamic pressure downstream of a rotor blade (kPa) in Figs. 2-8 and 2-9
or rotor torque '
influence coefficient w.r.t. ()

radial distance from rotor hub

rotor radius (m)

position vector in global reference frame (blade axes), (X, Y, Z)}T
rotations due to deformation about the global XYZ axes respectively
nodal deformation vector

slack variables

scaling terms for variable, x;

segment X-length

rotor thrust

matrix relating local finite element displacement vector to the
corresponding global quantities

transformation matrix relating local finite clement axes xyz and rotating

blade axes XYZ defined in Equation 43
local finite element deformations along the x, y, and z directions

respectively.
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global finite clement deformations along X, Y, and Z directions

respectively
upper bound imposed upon state variable, x;

downwash at blade vortex lattice control points

cost function weighting terms used in Egs. (5-22) and (5-23)
internal and external virtual work respectively

local axes for a finite element

vector of wake collocation normal and binormal positions
state vector, { xi } T used in optimization

global (rotating blade) coordinates

XYZ position of the origin of local finite element axes

sectional angle of attack (rad.)

angle of attack increment post stall

angle between the local y and 1 axes
anhedral angle of beam finite element

vector of bound circulations for the vortex lattice
bound circulation

circulation non-dimensionalized by QR2
engineering shear strains defined in Egs. (4-11b,c)
strain tensors defined in Egs. (4-11b, c)

axial strain defined in Eq. (4-11a)

principal axes of the cross-section

local twist displacement of finite element

Lagrange multipliers associated with inequality constraint, gj,

equality constraint, gy, respectively
sweep angle of beam finite element

Lagrange multiplier vectors associated with the lower and upper bounds

respectively on X

normalized coordinate, x/1

density of the blade material

air density

shear stresses defined in Egs. (4-15b,¢)

axial stress defined in Eq. (4-15a)

vector of shape functions defined in Eq. (4-6)

shape function matrix defined in Eq. (4-7)
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Saint Venant warping function relating out-of-plane warping to torsional
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refers to elastic axis

refers to global axes and local axes respectively
refers to element, ie

derivative w.r.t. X
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1. INTRODUCTION
1.1 Background of the Present Effort

Design optimization is an issue of continuing importance in a variety of
aeronautical applications, including rotorcraft performance analysis. Developing an
effective compromise design that can meet the requirements of rotor performance in
hover and in climb or high speed axial flight is an exceptionally difficult problem. Hover
itself remains an important design point because of the critical role it plays in sizing the
engine and establishing rotor disk loading and the blade twist distribution. Moreover, the
axial flight condition has become even more critical, since the success of present and
proposed tiltrotor designs depends on efficient performance of lifting rotors in propeller
mode. The complexity of the problem increases still further when structural and dynamic
constraints are considered. The primary objective of this effort was to develop a
comprehensive design optimization capability suitable for analyzing both hover and axial
flight conditions in modern helicopter and tiltrotor configurations.

An essential prerequisite for a practical and effective optimization analysis is for a
refined, flexible, and well-validated hover performance code to be used as the basis of the
performance calculation. The task of developing computational tools to reliably analyze
rotor performance has been under study for many years. Much of the work in this area
has centered around efforts to approximate crucial rotor wake effects through
generalizations of vortex wake trajectories from empirical data (Refs. 1 and 2) or through
interpolations between ‘representative’ free vortex computations (Ref. 3). It has long been
Clear that the preferred approach is the explicit computation of full free wake vortex
flows; this approach avoids reliance on particular data sets and yields force-free,
physically valid wakes which enhance confidence in performance predictions. The next
section will summarize previous work in the development of free wake analyses as well
as describe the formulation implemented here.

A second requirement for a successful optimization analysis is that it must
efficiently evaluate candidate designs with minimal resort to repeated calls of the
computationally expensive open-loop performance analysis. It is in this regard that the
influence coefficient approach proves highly advantageous. An analysis incorporating
this approach, designated EHPIC (Evaluation of Hover Performance using Influence
Coefficients), has proved to be the ideal foundation for a free wake optimization routine,
since its formulation permits straightforward evaluation and exploitation of information
on the gradients in performance due to design changes. The results presented below will
show how an optimization analysis based on influence coefficients can perform efficient
exploration of design space without sacrificing the refined physical model associated with
free wake treatments.

Previous reports and papers (Refs. 4 and 5) have described exploratory work on
this topic, involving computations of improved performance on representative rotor
configurations using a loose coupling of the EHPIC code to a linear optimization
analysis. While these demonstration calculations were encouraging evidence of the
feasibility of developing an optimization code based on EHPIC, they were restricted to
using twist as a design variable and lacked the flexibility to realistically constrain the
evolving designs. It was thus recognized that considerable additional development and
validation work was required to implement a useful, practical optimization code.



References 6-9 summarize extensive performance validation efforts undertaken
with the EHPIC code. These references describe correlation studies involving over thirty
separate rotor configurations, including tiltrotor designs, conventional main rotors, and
tail rotors. In general, these studies achieved quite accurate correlation with minimal
resort to "dialing" of model parameters. This work in OGE (Out of Ground Effect) hover
calculations has been supplemented by enhancement of the original EHPIC (Mod 0.0)
code (Ref. 9) to include a ground plane to allow IGE (In Ground Effect) calculations
(Ref. 10). Validation of IGE performance and wake geometry predictions discussed in
References 10 and 11 has also been encouraging.

Thus, the underlying EHPIC hover model has undergone substantial testing and
refinement since the original work described in Reference 9, but still other improvements
were judged desirable to improve the flexibility and physical fidelity of the code. Many
of these new features are described in Sections 2, with additional details on
implementation and use provided in Reference 12. The new features of the model
include: a provision for lift limitation due to airfoil stall; direct calculation of wake-
induced velocity at specified points; refinements in vortex core modeling; research on
vortex/blade encounter loading; and significant CPU reduction through the streamlining
of influence coefficient evaluations. Sections 3 and 4 describe still more substantial
improvements to the baseline EHPIC analysis, including a provision for high-resolution
roll-up of tip vortices and computation of static structural deflection. Later sections
directly take up the topic of the optimization algorithms implemented as well as the
calculations undertaken to validate the functionality and capabilities of these algorithms.

1.2 Review of Previous Work in Rotor Design Optimization

There exists a large body of literature on numerical optimization procedures.
Recent reviews of aerospace- and rotorcraft-oriented applications of numerical
optimization give evidence of the maturity of these techniques (Refs. 13-14). As for
particular applications, Moffitt and Bissell (Ref. 15) undertook a general examination of
rotor airloads in both hover and forward flight using a prescribed wake acrodynamic
model with circulation coupling. Their aim was to find airload distributions that led to a
minimum power required for a specified thrust. Nagashima and Nakanishi (Ref. 16)
studied hover performance optimization for coaxial rotors, employing both a closed-form
"generalized momentum" model of the wake as well as a simplified free wake model
based on vortex rings. Walsh, Bingham, and Riley (Ref. 17) and Chattapodhyay, Walsh
and Riley (Ref. 18) describe the assembly of several existing acrodynamic and vehicle
trim models and a commonly available optimization routine (CONMIN) into a broadly
applicable blade design optimizer for hover and forward flight. This work is part of a
larger effort to develop a multidisciplinary design optimization for rotorcraft (Adelman
and Mantay, Ref. 19) which has been directed at achieving appropriate compromise
designs across a wide range of performance measures. This in turn has been
s(;;pplemcntcd by more specialized studies performed by Chattapodhyay and McCarthy

ef. 20).

Nearly all of the studies mentioned above rely on qualitatively similar approaches;
an objective function (e.g., vibratory load levels or hover figure of merit) is defined along
with a set of design parameters to be varied. Limitations are placed on the variations
- allowed in these quantities in the form of inequality constraints and initial estimates of
parameter values to meet the specified performance levels are made. Using
approximations to the actual nonlinear relations governing the objective function, the
design parameters are varied in the vicinity of the initial estimate to reach the desired
level of this function. The more recent work, (Refs.19 and 20), has expanded the scope
of such methods to address multidisciplinary optimization efforts involving the
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simultaneous maximizatior or minimization of complex objective functions composed of
weighted measures of performance (e.g. hover figure of merit and blade dynamic
frequency placement, or climb power and noise signature).

All this work represents a broad range of accomplishment in design optimization,
although as a general rule these efforts have featured simplified aerodynamic models in
their performance calculations (e.g., strip theory and prescribed wake models). This
doubtless has been a response to the need to provide designers with computationally
efficient tools; however, now that more and more computational power is becoming
routinely available, it is appropriate to employ more advanced methods. Simplified
models lack the generality, accuracy and adaptability of the more advanced treatments
now available and so their use in an optimization analysis undermines confidence in the
true optimality of the designs computed. The advantage of the current effort is that the
advanced free wake analysis embodied in the EHPIC code can be utilized to produce a
more comprehensive, reliable and flexible optimization treatment. Furthermore, EHPIC's
influence coefficient approach helps ameliorate potential increases in CPU time because
in the course of its own solution it calculates many of the derivatives required by the
optimization algorithm.



2. HOVER PERFORMANCE PREDICTIONS USING A FREE WAKE ANALYSIS

This section recapitulates the development of the EHPIC code and introduces the
important concepts that were carried over into the current effort. The evolution of the
EHPIC code from the Mod 0.0 version originally delivered to NASA in 1987 to the later
Mod 1.0 and Mod 2.0 versions is summarized. Also described in this section are the
major modifications that were incorporated in EHPIC/HERO to enhance performance and
to adapt the EHPIC analysis to the tasks associated with design optimization.

2.1 The Influence Coefficient Approach to Free Wake Analysis

Early efforts to develop free wake hover models using time domain calculations
(Refs. 21 and 22) were hampered by long computation time and poor (or nonexistent)
convergence due to the inherent instability of the hovering rotor wake (Fig. 2-1).
Reference 9 describes the development of an influence coefficient relaxation approach to
the free wake problem that determines the wake geometry while circumventing the
convergence problems associated with the time-marching simulations. As mentioned
previously, the EHPIC code has produced accurate performance predictions for a wide
variety of rotor systems in hover, and has proved to be flexible and robust. EHPIC also
includes curved vortex elements (Reference 23) in the model of the rotor wake to enhance

both the efficiency and the accuracy of the computation.

The general objective of a free wake hover analysis is to find the wake geometry
that satisfies two conditions: first, that the wake filaments are in free motion; and second,
that the flow tangency condition is satisfied on the blade. To achieve the free motion
condition, the wake filament trajectories must be tangent to the local velocity vector
evaluated on the filament when viewed in a rotating reference frame, i.c., there will be no
crossflow velocity components at any point on the filaments under force free conditions. .
The coupled free wake/lifting surface hover analysis in EHPIC proceeds by first making
an initial guess for the blade loads and the wake geometry. This initial guess will not, in
general, satisfy the required conditions, and so must be adjusted in a succession of
solution steps. To accomplish this, the independent variables in the problem (the bound
circulation at stations along the blade and the vortex wake position coordinates) are
systematically perturbed, and the effect of these perturbations on the dependent variables
(the downwash on the blade and crossflow velocities in the wake) are summed and
formed into influence coefficients (Fig. 2-2). These coefficients allow the construction of
a set of simultaneous linear equations in matrix form which predict the change in
dependent variables due to the changes in independent variables. The coefficient array so
formed can be used to null the crossflow and downwash velocities by inverting it and
multiplying it by the vector of residual velocities. The influence coefficient array appears
in a linear system of equations in the following form:

[Ai] i [qu %] A
Aw] | QuQuwy]| Ay , 2-1)

The independent variables on the right hand side are, respectively, the position
perturbations and bound circulation perturbations from the initial state, while the
dependent variables on the left hand side represent the crossflow velocities in the wake
and the downwash at the blade.



Figure 2-1. Typical form of time domain instabilities observed in free vortex
calculations of hovering rotor wakes (dashed line); solid line
represents the idealized contracting wake solution for this one-bladed
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These variables, of course, represent perturbations about an initial guess, which in
general features some nonzero residual velocities on the left hand side. Were the problem
purely linear, inverting this matrix and multiplying it by the residual velocity vector
would yield a vector of wake displacements and circulation perturbations that would
exactly null the velocities in question, i.e.,

[A;'J=_[qu qu]'l[q—x;] 0
5] L0 Q) [

In general, the process must be repeated due to the inherent nonlinearity of the problem,
and only small fractions of the residual velocities are nulled in each iteration. In practice,
this approach has been found to have robust convergence properties, despite the
complexity of the relaxation procedure. For most rotor configurations with up to ten
wake filaments per blade, convergence is achieved after ten to twenty relaxation steps
(Fig. 2-3). These solutions, while they are self-preserving vortex flows, can be shown to
possess time-domain instabilities that preclude the success of time-marching calculations

(Ref. 9).

In the EHPIC code, the wake vortex filaments are represented by curved vortex
elements which provide an efficient means to perform the Biot-Savart integrations
necessary for the evaluation of wake-induced velocities (Fig. 2-4). A vortex lattice/lifting
surface analysis is used to evaluate the thrust and induced drag on the rotor. An array of
thin lifting vortex quadrilaterals are used to model each blade, and the relaxation solution
produces a vector of bound circulation values that null the downwash at the control point
at the center of each quad. Using the local values of free stream and induced velocity, the
Joukowski law is applied to find the force and moment on each lattice element. This
procedure also produces a spanwise lift coefficient distribution that is used, along with
g]lc local Mach number, in a look-up scheme that provides the profile drag coefficient of

at section.

One advantage of the influence coefficient approach is that it finds the physically
correct, self-preserving wake geometry without the instabilities and consequent lack of
convergence of earlier methods that convected the wake in a time-marching manner.
Furthermore, once a converged solution has been obtained, adjacent solutions that are
almost linearly close along a performance curve are readily obtained with only a few
relaxation steps, climinating the need to wash out the transients occurring in time-
marching schemes.

2.2 Evolution of the EHPIC Code

The EHPIC code has evolved considerably since the original work summarized in
Reference 9. This initial effort was directly purely at obtaining performance solutions for
isolated rotors operating out of ground effect, and the resulting code was designated the
Mod 0.0 version. Subsequent development work sponsored by NASA to upgrade the
original code led to three major modifications: implementation of a ground plane model
to allow for computations in ground effect; incorporation of an eigenanalysis package to
permit evaluation of the linearized time domain stability of converged configurations; and
substantial revision of the original coding to reduce the code's CPU requirements on
vector processing computers. This version was designated Mod 1.0, and its development
is described in detail in Reference 10.



CONTINUUM DYNANICS, INC.
GRAPHICS LAB.

Figure 2-3. Typical converged rotor wake configuration for the EHPIC code (six
free wake filaments trailing from each blade). (Wake from only one

blade shown.)
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Figure 2-4. Typical arrangement of elements used to discretize trailing vortex
filaments for wake-on-wake velocity calculations. The formulation
of parabolic Basic Curved Vortex Elements (BCVE's) and Self-
Induction Vortex Elements (SIVE's) given in Reference 23.
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The ground plane model implemented in Mod 1.0 consists of an image system of
vortices located symmetrically opposite the free vortex elements in the physical wake. A
prescribed wake model completes the transition from the freely distorting filaments to an
efficient far wake representation. References 10 and 11 both contain discussions of wake
geometry and performance results obtained with the ground effect model.

This vectorized EHPIC Mod 1.0 variant achieved roughly a factor of four in
computation time reduction over Mod 0.0 when implemented on a CRAY Y-MP.
Additional computation time reductions - independent of computational platform - have
been realized in a Mod 2.0 version developed under an internal effort at Continuum
Dynamics. This version incorporates a broad range of efficiency enhancements,
primarily limiting the frequency of updates of the influence coefficient array. Mod 2.0
contains the same physical model as Mod 1.0, but can run three to four times faster on the
same machine. The speed-up in Mod 2.0 is independent of (serial or vector) platform, so
a Mod 2.0 calculation operating on a CRAY Y-MP or similar vector processor can run
over an order of magnitude faster than the original EHPIC Mod 0.0.

The Mod 2.0 variant was the starting point for the development of EHPIC/HERO
described here. (Unless otherwise specified, any subsequent references to 'the EHPIC
code' should be understood to refer to Mod 2.0). During the evolution of the
EHPIC/HERO code from the baseline EHPIC analysis, a variety of extensions and
revisions were incorporated independent of any optimization functions to relieve earlier
limitations on the analysis and effect improvements in the consistency of the model, or
simply to make the analysis more convenient to use. The remainder of this section
describes the implementation of the most significant of these modifications, while
discussion of two major extensions - the calculation of tip vortex roll-up and the
implementation of a structural deformation model - is reserved for subsequent sections.

2.3 Calculation of Aerodynamic Loading
2.3.1 Vortex lattice model

In EHPIC and EHPIC/HERO, thrust and induced torque are computed using a
vortex lattice formulation similar to that described in Reference 24. The present model
allows substantal flexibility in the specification of the blade's planform so that complex
designs may be accommodated. Currently, the lattice can be divided into as many as
fifteen different regions, with separate linear distributions of twist, taper, and sweep
within each. The spacing of the quadrilaterals in a vortex lattice analysis is an important
consideration, as is discussed in Reference 25. The judicious selection of the density,
spacing, and orientation of the quadrilaterals can considerably enhance the efficiency and
rate of convergence of the blade loading. The current analysis has been provided with
sufficient flexibility to arrange essentially arbitrary chordwise and spanwise distributions
of lattice elements though the control points are always assumed to lie at the geometric
center of the quadrilateral. All of the calculations discussed in this report feature uniform
spacing of vortex quadrilaterals both in the chordwise and spanwise directions, unless
otherwise noted. (Note: A special semicircle cosine spacing option similar to the Lan
Type-B model discussed in Ref. 25 is currently available within the EHPIC/HERO code.
The description of the vortex lattice structure in this section does not apply to this option.
The semicircle spacing option was not used for any of the results presented in later

sections.)

The vortex quadrilateral lattice is drawn in blade coordinates, which have their
origin at the rotor hub with Z down along the shaft, X radially outward along the
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planform, and Y normal to the XZ plane (Figure 2-5). First the blade segments are laid
out separately in the X'Y-plane applying taper and sweep. The lattice is displaced toward
the trailing edge by a distance of one quarter of the chordwise length of the leading edge
quadrilaterals. For one row of quads and an unswept rectangular planform, this puts the
leading edge quadrilateral along the quarter chord line of the blade and the vortex lattice
control points (center points of each quad) along the 3/4 chord line of the blade. The
lattice is inset from the blade root and tip by a distance equal to a quarter of the width of
the last quad at either edge (Ref. 26). For reference purposes, the quarter-chord line of
the blade is taken as the line that connects the quarter chord points of each blade section,
while the X axis of the blade coordinate frame is the line connecting the hub with the
quarter-chord of the root section. The sweep angle for any segment is defined as the
angle the local quarter-chord line makes with the X axis. Pitching moment calculations
use the local quarter-chord line as a reference axis, however collective pitch is applied
about the X axis.

In actual calculations, the order of operations is different than is shown in Figure
2-5; first, taper is applied linearly from root to tip along each segment. Then sweep is
applied by displacing each segment toward its trailing edge (+Y-direction); the sweep
angle is the angle between the X-axis and the quarter chord line. The twist gradient is
applied by rotating each chord of the lattice about its quarter chord point. Finally,
anhedral is applied by displacing each segment downward in the +Z-direction. The
resulting vortex lattice structure is stored and written to a file that can be used in a
graphical verification of the planform. Also, once assembly of the lattice is complete, it
is subjected to a local stretching to account for the effects of compressibility on sectional
lift and moment properties, as described in Reference 9; compressibility effects on
sectional drag are captured through the look-up procedure described in Section 2.3.2.

In addition to the geometric inputs just described, a camber distribution for the
blade may also be specified. Numerical input is used to describe the geometry of the
camber line. When camber is present, the lattice itself is not deformed to fit the specified
distribution, rather the boundary conditions at the vortex quadrilateral control points are
altered to introduce the surface slope into the calculation. However, a certain minimum
chordwise density of quadrilaterals is required to resolve the camber distribution; an
absolute minimum of three quadrilaterals chordwise should be used, with five or more
being desirable. This level of quadrilateral density can create a substantial computational
burden. An alternative approach for including empirical zero lift angles is also available
for cases where improved computational efficiency is desired. An appropriate rotation of
the vector normal to the blade at the control points of each quadrilateral will alter the
effective angle of attack of the section and can be used to introduce the shift of the zero
lift angle of attack. In this manner, realistic zero lift angles of attack can be introduced
into the calculations with only one quadrilateral chordwise. The introduction of the zero
lift angle and the option for invoking the pitching moment coefficient from two-
dimensional tables are described later.

The solution method used to find the bound circulation given the vortex lattice is
essentially a straightforward implementation of the classical approach described in the
literature on lattice methods for fixed wing applications (e.g., Ref. 24). Each of the
quadrilaterals is examined individually and a mean vector normal to the quadrilateral
surface is established as shown in Figure 2-6, which also shows the location of the
‘control point' associated with the quadrilateral. Given this and the location and
orientation of each of the quadrilaterals on the blade, the velocity induced by the blade
lattice on each of the control points is determined, assuming unit strength for each
quadrilateral. Then the resulting velocity is resolved in the normal direction at each
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control point, yielding an array of influence coefficients relating the vector of bound
circulations y to the vector of downwashes w at each control point:

w =AY (2-3)

The vector Yy can then be used to solve for the forces and moments on each vortex
quadrilateral edge by applying the Joukowski Law , i.e.,

Fx=p 7 @ * 5x) 1x j=1,..n k=1,234 (2-4)

Here, sx is the unit vector directed along edge k of quadrilateral j ; ljk is the

length of this side, and ¥ is the strength of the quad. The reference velocity g for the

evaluation of forces is computcd at the midpoint of the edge k. The forces on each quad
edge are then summed to yield the integrated forces on each blade:

E = (HI+YI+TK) = X, 3 Fjk | 2-5)
j k

Moments exerted by the blade about the sectional quarter-chord reference axis can also
be computed:

= (LI+MI+NK) = 3, g Ejk ¥ Tjk | 2-6)
j

Here, 1 is the vector from the reference axis to the point of action of E. Moments about
the blade root are taken to compute the coning and in-plane deflection, while pitching
moments can be computed for each section to use for the calculation of torsional
deformation.

It is appropriate here to note a change implemented in EHPIC/HERO involving
the blade/wake junction. In EHPIC, the trailing vortex filaments were assumed to be
attached to the control points at the trailing edge of the lattice. As described in the
outline of the near wake model in Reference 9, the influence of the wake elements
attached to the blade are deleted and replaced with an '‘overlap’ region consisting of an
extension of the bound vortex lattice into the near wake. One new aspect of the
aerodynamic model in EHPIC/HERO was the implementation of a refined model of the
near wake that could be used to replace the overlap model. One step required for the
implementation of this high-resolution near wake model (described in the next section)
was to arrange a new blade/wake junction, illustrated in Figure 2-7. The filaments now
attach to the trailing edge of the vortex lattice; this shift in the release points of the wake
can have a noticeable effect on rotor performance, as will be shown in Section 6. The
overlap model used in EHPIC may still be invoked, 1f desired.

232 Secuonal drag and moment charactensncs

To introduce forces generated by profile (viscous and pressure) drag into the
calculation, the only practical approach at present is the use of two-dimensional airfoil
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data. In the EHPIC code, the form of the data input required involved tabulated values
for sectional drag coefficients as a function of Mach number and lift coefficient.
EHPIC/HERO now requires C-81 format tables of lift, drag, and moment coefficients as a
function of angle of attack. However, section lift coefficient and Mach number are still
the variables used to enter the tables, while angle of attack is simply an intermediate
parameter. In the present calculation, the section lift coefficient is computed using the
vortex lattice analysis described above, and the C-81 lift coefficient table is entered with
this value and the Mach number to find an effective angle of attack for the section. Using
this angle as a parameter, the drag coefficient (and, if desired, the moment cocfficient) are
computed for the local Mach number. The lift coefficient table is also used to find the
zero lift angle as well as the maximum section c; for use in the lift stall calculation
described in Section 2.4.

The two-dimensional coefficients are, of course, defined only for a specific airfoil
section. Many rotor blades feature more than one section along the span. In the current
analysis, as many as ten different sections along the span may be specified. For any
given spanwise station, the section coefficients are computed for each of the two airfoils
that bound the segment containing the station of interest and then interpolated linearly to
the desired point. Similarly, for each Mach number/lift coefficient pair, bilinear
interpolation is used to find the appropriate coefficients within ecach look-up table of drag
and moment coefficients. The user has the option of applying pitching moment
computations from either the look-up process or through the vortex lattice calculation.

2.4 Modeling of Lift Stall

The original EHPIC model included no provision for limiting the lift generated by
the vortex lattice aerodynamic model. EHPIC/HERO incorporates an option to use the
empirical information on Cjp,, to preclude unrealistically high lift values. The present

stall model works by tilting the vectors normal to the blade surface of quadrilaterals in
stalled sections by the amount required to reduce c; computed without stall to the ¢y, for

the section. This "stall adjustment angle", Aay, is assigned to each blade quadrilateral of
the stalled section. Once a section is stalled, the correction angle adjusts to ensure that ¢
never exceeds ci,,,. As the calculation proceeds, it is possible for the section to drop out
of stall, especially during the design optimization process. In this case, the adjustment
angle resets to zero and the section is no longer considered to be in stall.

Even though c) never increases above cy,,, it is appropriate for the profile drag to

continue to increase as the angle of attack of a stalled section increases. The value of Ao
is exactly the increment of angle of attack of the lattice section over the stall angle.

Therefore, when invoking the look-up tables, an angle of attack of & + Aoy is used to
compute the drag coefficient. One simplification in the present model is that the section
lift coefficient is assumed to stay constant at Cim,y as the angle of attack is increased
beyond stall, rather than decreasing as is typically the case for 2D airfoils. The existence
of a multi-valued lift function was found to cause dithering in the optimization
calculations for very heavily loaded rotors. Results of demonstration calculations of the
stall feature on a realistic rotor configuration is shown in Section 6.

2.5 Scan Plane Calculations
EHPIC/HERO includes a provision for computing the wake-induced velocity at

specified sets of scan points in the vicinity of the rotor. The present implementation sets
up points lying in "scan planes” at particular azimuth angles relative to the blade. Radial
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and vertical spacing of points are defined by the user. Thus, planes of “crossflow”
velocity data at a given azimuthal location relative to the blade are easily captured, while
planes of data normal to the rotor disk can be captured simply by using results from
within a large number of such crossflow planes at a particular vertical location. It should
be noted that the wake geometry and thus the resulting flow field are at all times assumed
to be axisymmetric.

Sample calculations were undertaken to demonstrate and validate the scan plane
velocity computations, The data set selected involved the downwash velocity
measurements on the .658-scale V-22 rotor described in Ref. 27. For this case,
EHPIC/HERO was run with nine filaments trailing from the span. Downwash
computations were made in four crossflow planes downstream of the reference blade and
then suitably averaged in an attempt to duplicate the time-averaged measurements given
in Ref. 27. Two operating conditions were considered, both with a tip speed of 232 m/s
(760 fps) and thrust coefficients 0.0117 and .0059. The comparisons of the predictions
with the time-averaged data are shown in Figures 2-8 and 2-9. As is evident, the
predictions capture the behavior of the measured wake reasonably well, with the
exception of a single anomalous point in the center of the measured distribution.

2.6 Determination of Trailing Vortex Strength

Figures 2-10 and 2-11 illustrate the procedure for determining vortex filament
strengths in the EHPIC/HERO code. The circulation distribution along the blade is
divided up into zones which each correspond to a particular vortex filament. The change
in circulation across each zone is assigned to the vortex filament associated with that
zone, as shown. In order to have a physically consistent wake model, it is necessary that
each filament trail from the centroid of the circulation distribution it represents. ‘

In the original EHPIC code, the zone boundaries were input by the user and
remained fixed throughout the calculation. After a calculation was complete, the user
typically had to adjust the zone boundaries and vortex release points to ensure that all the
circulation generated on the blade was trailed into the wake and that vortex filaments
were released from the appropriate centroid positions. Though this scheme works fine for
performance calculations at particular operating conditions, it was found to be inadequate
for the optimization calculations to be undertaken in this.effort. During the optimization
process, substantial design changes inevitably lead to changes in the circulation
distribution that require the position and strength of the trailing filaments to adjust.
Without some form of internal adjustment, the optimization process will almost
invariably lead to a non-physical solution.

The EHPIC/HERO code offers two new approaches that allow the wake model to
adapt to a varying circulation distribution. These methods are illustrated in Figures 2-10
and 2-11. In both methods, the code determines the circulation zones internally, updating
zone boundaries when necessary as the circulation distribution evolves. In the first
method, the zone boundaries are placed equidistant between vortex filament release
points. Zones on either side of the peak circulation location are treated separately.
Hence, if the peak circulation location moves, the zone boundaries will adjust even if the
vortex filament release points are fixed, (as shown in Figure 2-10b). The strengths of the
vortex filaments adjust to accommodate the changing circulation distribution so that the
wake always contains the appropriate amount of circulation. EHPIC/HERO also allows
the option to have filament release points move to the centroids of the zones they
represent automatically. This usually leads to a physically consistent model once the
solution converges, Allowing the filaments to move can slow the optimization process
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and is often not even necessary for this method because the filament release points will
always be near the centroids of the zones they represent.

In the second approach, illustrated in Figure 2-11, the user assigns fixed values for
the fraction of the peak circulation to be associated with each zone, and therefore, to be
assigned to the corresponding filament. Figure 2-11 shows an example where three
inboard zones (and filaments) are each assigned one third the total circulation trailed
inboard of the circulation peak and one tip vortex is assigned the total outboard
circulation. It is usually wise to have the filament release points move automatically to
the centroid of the zones for this method because the zone boundaries are no longer tied
to the filament release points. If the zones and filaments have to traverse long distances
during the calculation or if they tend to bunch together (as in Figure 2-11b), this approach
can suffer from convergence difficulties. However, when successful, it offers a method
by which the code creates a physically consistent, evolving wake model that requires no
post-calculation iterations by the user. Again, the optimization process is delayed when
filament release points move, but once the calculation is near the optimum circulation
distribution, the release points will cease to change and the optimization algorithm will
proceed even more rapidly than the previous method because the fractional strengths of
the vortex filaments are fixed from step to step. The choice of the best method often
depends on the user's preference and the particular problem being studied. Additional
discussion on this point is contained in Reference 12.

2.7 Investigation of Close Blade/Vortex Interaction Modeling

Hover performance is in general highly sensitive to the calculation of aerodynamic
loading in the blade tip region. The tip loading is often influenced by the strong
interaction with the vortex from the preceding blade. One topic of research during the
present effort involved methods for more accurate and efficient treatment of this effect.

A candidate method for accurate resolution of blade-vortex interaction involves the
application Analytical/Numerical Matching (ANM) (Refs. 28 and 29). This approach
includes the development of a new way to handle near-field interactions between the tip
vortex and the rotor blade tip of the following blade. The problem arises because the
inflow velocity at the blade and the resulting blade loading, which are rapidly varying in
space, must be defined accurately to assure correct performance predictions. To calculate
the velocity induced at enough points on the blade to assure adequate resolution is
computationally expensive in the context of a vortex lattice model, and would in general
require a special high-resolution region of the lifting surface. Furthermore, this region
would have to be adaptive since the position of the vortex is not known ahead of time.

ANM involves an approach similar to the method of matched asymptotic
expansions. This approach uses a low resolution numerical calculation in conjunction
with an analytical near-field correction. As a result, the lifting surface calculation is
needed at very few points on the rotor blade, with the high-resolution near field being
constructed from the local analytical solution. To implement this approach, the
numerical free wake velocity field must be smoothed with an artificially fat vortex core
when velocities on the rotor blade are computed. Because this smoothing produces very
gradual variations in velocity, even due to near-field contributions, only relatively few
control points on the blade are required to reconstruct this velocity field accurately. Note
that the far-field which lies outside the fat vortex core, and which actually includes most
of the free wake, is relatively smooth anyway. The fat core smoothing is used only to
calculate wake effects on the rotor blade, whercas the actual core is used when
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calculating velocities on the wake itself, so that the vortex filament positions are still
being accurately computed.

To implement this method it is necessary to develop an accurate near-field solution,
ideally an analytical solution based on the local filament configuration. This solution
should incorporate the position and orientation of the vortex filament passing near an
idealized semi-infinite blade. Actually, two such filaments must be superimposed. One
filament adds the contribution of a vortex with a physically realistic core, and the other
subtracts a vortex filament with the same fat core used in the numerical calculation. The
net effect in the near field is to cancel the numerical fat core effect and add the effect of
the actual core size. At the same time, the far-field effect remains unchanged since the
two portions of the analytical solution cancel in the far field. The vortex filament
trajectories are obtained from the numerical free wake calculation modified by the

analytical solution effect on the vortex.

Figure 2-12 shows how the blade-vortex interaction can be decomposed into a low
resolution numerical solution and a high-resolution analytical solution. The numerical
solution encompasses the full complexity of the problem, except that the fat core
smoothes out the strong gradients due to the local blade-vortex interaction. The portions
of the numerical solution outside the fat core radius give the correct velocity contribution
on the blade. Because of the local smoothing, a relatively low density of vortex
quadrilaterals can be used on the rotor blade. Basically, the fat core size must be
comparable to the quadrilateral spacing to assure accuracy. Taken alone, however, this
approach will give an accurate answer to the wrong problem. The local analytical
solution then corrects the numerical solution to obtain the correct solution to the original
problem.

Figure 2-12 also illustrates the role of the local numerical solution. This solution
can be obtained from the superposition of a vortex with the actual core size and an
opposite sign fat core vortex. These vortices can be modeled as straight vortices of
infinite extent, oblique to the blade. The vortices should be positioned to lie tangent to
the actual curved tip vortex filament at the point of closest passage beneath the blade. It
does not matter that these two vortices are straight since they cancel each other in their far
field, namely at distances beyond the fat core size. However, local curvature effects can
be added as a refinement, if this is found to be necessary; distant curvature effects are
handled by the numerical solution. In the near-field region, the opposite sign fat core
analytical solution cancels the fat core numerical solution, leaving the actual core
analytical solution. By appropriate choice of the fat core size relative to other problem
length scales a mathematical overlap region is created, producing a uniformly valid result
when all the parts of the problem are added together.

In the course of this effort, the groundwork for the ANM implementation was laid
down by incorporation of a feature permitting the use of the artificial fat core for wake-
on-blade interactions. The critical feature needed for full implementation, of course, is
the near-field solution that characterizes the close interaction of the vortex filament with
the blade surface (except for the case of direct impingement, which is beyond the scope
of this study). This near-field solution is composed of two parts: a refined model of the
vortex core structure and an efficient, high-resolution model of the lifting blade surface.

A vortex core model was identified for use in this context, drawn from the work of
Bliss (Ref. 30). The roll-up calculation and core structure model identified in Reference
30 provides for a three-layer representation of the vortex core, involving a laminar sub-
core, a potentially turbulent intermediate region, and an inviscid outer roll-up region.
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The analysis in Reference 30 also provides a way to relate some of the important
integrated properties of the core to spanwise lift and drag loading on the generating blade.

Identification of an appropriate analytical lifting surface model proved more
difficult. The approaches presently in the literature (e.g., Ref. 31) involve infinite-span
lifting wings, while proper treatment of tip effects requires a semi-infinite span to be
used. Reviews of the available literature on analytical lifting surface methods (e.g., Ref.
32) did not yield a method sufficiently flexible to be easily incorporated in a local
solution. Further investigation indicated that a numerical inner solution was called for.
Previous experience in adapting relatively simple numerical methods to serve as the inner
solution in an ANM (or 'NNM') implementation indicated that while not ideal, high
accuracy could nonetheless be achieved while still retaining a net gain in computational
efficiency.

Two numerical methods were studied. The first involved the use of a high-
resolution panel solution for the lifting blade in the vicinity of the tip, using an extension
of the fixed wing compressible panel method described by Magnus, et. al. (Ref. 33). This
method, which is implemented in the commercial panel code PANAIR, employs a mix of
source and doublet singularities to capture both the thickness and lifting effects.
Calculations of subsonic flow around thick, lifting wings and pressure correlations with
existing airfoil section data were encouraging. However, it was found that the
computational demands of the panel method inner solution, even when restricted to an
isolated high-resolution region close to the tip, has so far kept this implementation from
being cost effective.

Investigation into another more promising possibility began recently. Reference 34
describes an exceptionally simple (hence efficient) numerical lifting surface method
originally developed for the analysis of unsteady flow over wings with control surface
deflection. This approach involves distributing a set of point doublet singularities over a
set of panels on the mean camber line of the lifting surface. Though this method lacks a
representation of thickness, when reduced to the steady case, the point doublet method
offers a very efficient method for resolving the loading near blade tips and during close
vortex interactions. Also, the simplicity and efficiency of the model appears to make it a
suitable candidate for implementation in the ANM framework presently in place. Work
on this topic is ongoing, and this refined tip model is a candidate for implementation in
future versions of EHPIC/HERO.
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3. HIGH RESOLUTION ROTOR WAKE COMPUTATIONS

The work described in this section was motivated by the high sensitivity of rotor
ormance to the wake structure trailing from the blade tip. As discussed in Reference

9, EHPIC calculations typically involve using a single vortex to model the wake of the tip
region. Both experiment and experience with numerical performance correlations to date
support the use of this approach in many physically important cases. However, itis nota
fully general representation. This section describes the formulation of a high-resolution
numerical model of the blade wake designed to be more generally applicable and, in
particular, to offer greater flexibility in modeling the wake trailed from the blade tip

region.
3.1 Rotor Tip Vortex Roll-Up

Recently there has been much interest in the rotorcraft community concerning the
flow near the tip of a helicopter rotor blade; much of this has been inspired by the
possibilities of improved aerodynamic performance resulting from advanced blade tip
design, e.g., swept-tapered planforms such as the S-76, the UH-60, and the BERP tip.
The advent of tltrotor configurations with highly twisted blades that depart significantly
from conventional design also calls for better resolution of the dominant physical
phenomena which are present in the rotor wake. Under typical operating conditions,
these rotor blades all tend to exhibit bound circulation distributions that depart from the
pattern characteristic to conventional untapered planforms with moderate twist, i.e., an
abrupt drop in bound circulation near the tip (Fig. 3-1). The presence of gradual tip load
roll-off (e.g., Fig. 3-2) may lead to incomplete tip vortex roll-up by the time of the first
blade encounter. This introduces a requirement for an analysis that explicitly computes
tip vortex roll-up.

General methods for the analysis of tip vortex formation in rotorcraft are not
available, though experimental work has yielded significant insights into the structure of
tip vortices. References 35 and 36, among others, have carried out measurements of swirl
and axial velocities in rotor vortex cores with the objective of characterizing the core
structure. This work has also provided empirical support for models of the flow ficld
inside the vortex core used in previous calculations . Indirect evidence of the behavior of
rotor blade wakes can also be obtained from smoke and shadowgraph visualizations
carried out over the last twenty years (Refs. 1, 2 and 37). These studies have confirmed
the basic wake structure originally observed by Gray in 1956 (Ref. 38), i.e., a single
strong tip vortex accompanied by a more diffuse inboard wake sheet. The formation of
this tip vortex is caused by the rapid roll-up of the wake immediately downstream of the
rotor tip, which in turn is driven by the large gradient of bound circulation near the tip.
The presence of such loading distributions on conventional planforms is a well-
established fact, but significant exceptions to this pattern exist on tiltrotor blades as noted
above. At present, there exists very little measured spanwise load distribution data on tilt
rotors (Ref. 39 is one of the few examples), but what does exist - coupled with available
computations like that shown in Figure 3-2 - indicates that load distributions have very
broad peaks located well inboard of the tip and characterized by gradual load roll-off
outboard. ‘

Such bound circulation distributions will inevitably lead to more gradual roll-up
of the trailing vorticity, with the likelihood that not all of the maximum bound circulation
will be found in a concentrated tip vortex. Shadowgraph visualizations of model tiltrotor
wakes have indicated the presence of distinct tip vortices (Ref. 37), though in the absence
of simultaneous measurements of the circulation of these vortices, it is difficult to reach a
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conclusion as to the fraction of the peak bound circulation they represent. Scaling
calculations that borrow from work on fixed wing wake roll-up (e.g., Ref. 40) can be used
to estimate the degree of concentration of the trailed vorticity at the time of first blade
encounter. Figure 3-3 shows a schematic of the bound circulation on a fixed wing along
with the trailing wake distribution, as well as the major governing equations of the
Betz/Donaldson vortex roll-up model described in Reference 40. The model yields an
estimate of the core radius and circulation strength of the tip vortex of a wing as a
function of the downstream distance, given the peak value of the bound circulation as
well as its functional distribution.

Figure 3-4 shows the evolution of the core properties using this model as a
function of nondimensional downstream distance for elliptic, parabolic, and linear bound
circulation distributions. The downstream distance on the horizontal axis is
nondimensionalized as a function of aspect ratio AR, the wing lift coefficient Cr, and
distance from the location of the peak circulation out to the centroid of the trailing wake.
This analysis is not directly applicable to rotary wing tip vortex roll-up because of the
absence of the symmetry of the trailing wake about the peak circulation as well as
because of the effects of rotation. It was nonetheless judged to provide a useful guide for
scaling tip vortex core sizes and for estimating the degree of roll-up that occurs in typical
rotary wing calculations.

To investigate this point, assume that the I'g specified in these figures is treated as
the peak bound circulation near the tip and that the rotor blade tip wake rolls up into a
single vortex. If the further suppositions are made that the distance from the position of
the peak circulation to the blade tip can be equated to the wing semispan in the analysis
of Reference 40 and that the downstream distance is roughly equivalent to the curved
path described by the circular wake, then an estimate of the scale of the vortex core size
and circulation as a function of azimuth angle downstream can be computed. Denoting
the nondimensional distance from the peak circulation to the blade tip as krR and

normalizing the peak circulation by QR? yields a measure of the distance downstream of
the blade for use in the plot shown in Figure 3-4:

Iy
D = ax (3'1)
kR2 w )

1
2

(Here, y is the azimuth angle downstream of the generating blade in radians). This
formula applies for both linear and parabolic distributions and can be used as a rough
guide to the point at which the horizontal axis of Figure 3-4 should be entered to estimate
the fraction of roll-up that has taken place. For example, on an XV-15 rotor, a typical

value for I'm.x is .03, and the location of most interest is the first blade encounter which

occurs at ¥ = 2n/3. Assuming that the tip roll-off is parabolic and that kg = .05 (i.e., the
peak circulation is five percent inboard of the tip), D is 12.56 at the first blade encounter,
the plot of Figure 3-4 indicates that essentially all of the trailing vorticity will have rolled
up into the vortex by this point, since the fraction I'T plateaus at 1.0 at values of D
between 3 and 6. However, for typical XV-15 cases kg is at least 0.15, in which case D

. would be reduced to 1.4. As indicated in Figure 3-4, for a parabolic roll-off the roll-up

fraction at first blade encounter would then be about 0.8 for parabolic tip loading and
about 0.5 for linear loading. Realistic loading is probably closer to the former rather than
the latter, but in either case it seems likely that the tip vortex structure that the following
blade encounters will not be dominated by a single strong,
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fully rolled-up tip vortex. Most of the vorticity will have rolled up, but a substantial
fraction will remain outside the core, leaving a partially rolled-up filament whose strength
is substantially below the full value of the bound circulation peak.

3.2 Structure of Vortex Roll-Up Calculations

In principle, a variety of options exist for obtaining improved computational
resolution of the rolling-up vortex wakes. Recent work in this area has included attempts
to apply both Euler and Navier-Stokes solvers to the computation of wingtip roll-up
(Refs. 41 and 42). To date, the interrelated problems of high numerical diffusion and
large computation time have precluded practical application of such tools to the rotary
wing problem. In the context of EHPIC/HERO, it was judged most appropriate to
develop a refinement of the present Lagrangian free wake model using vortex filaments.

3.2.1 Initial resolution of rolling-up near wake

In the EHPIC code, an initial guess of the vortex wake geometry is successively
refined by an iterative relaxation approach based on the influence coefficient method
described in Section 2. Formally, this iterative relaxation can be considered a systematic
method for reducing the error in the position of the initial guess relative to the converged
solutdon. Within the iteration, various 'error modes' associated with the initial solution
are successively damped and the solution is marched toward the converged state.
Typically, several relatively widely spaced filaments are used to represent the inboard
vortex sheet and a single vortex filament is used to represent the strong rolled-up tip
vortex. Early attempts to use a high-resolution treatment of the vortical flow near the tip
region in EHPIC encountered numerical difficulties (Ref. 9). This was a direct result of
the strong amplifications of the high frequency components of the error modes associated
with the initial guess (which may be far from the converged wake geometry) and the
highly nonlinear variations in the wake-induced velocity field.

In the present effort, a new computational technique was developed that builds on
the existing wake model to permit a high-resolution treatment of the flow downstream of
the blade tip. The new method is based on the use of a sequence of coarse-to-fine
Lagra.nglan grids and is developed in the spirit of a multi-grid method which is widely
used in finite-difference and finite-element calculations (Reference 43). The key idea
behind the present technique is the observation that at the outset of the calculation where
the approximate discrete solution deviates substantially from the actual ‘continuous’
solution (i.e., the converged wake geometry), the error norm of the guessed initial
solution is large. If this solution is projected onto a fine grid using small elements, the
high frequency error mode would amplify rapidly because of the non-linearity of the
problem (the iterative influence coefficient method is based on a linear Newton's method
and neglects the non-linear terms in the problem). However, if a coarse grid (i.e., a small
number of vortex filaments each discretized using a few BCVE elements with large arc-
length) is used, the fast growing high frequency error components are not present. Thus,
the error norm can be represented as a Fourier series comprising of various Fourier modes
but with the highest frequency limited by that resolvable on the given grid.

The slow growing low frequency modes are damped in the iterative relaxation
process and the calculation converges to an approximate coarse grid discrete solution,
which is presumably 'closer’ to the actual continuous solution than the initial guess. Thus,
the first approximation to the desired high-resolution solution is thus the single-tip-
filament solution obtained in previous EHPIC calculations. The error norm associated
with the coarse discrete single-filament solution is correspondingly lower than the initial
guess. This solution can be projected onto a fine grid, and because the amplitude of the
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resulting high frequency error mode is much lower, the non-linearity of the problem is
not significant (any non-linear term is small) and the discrete solution can be marched
toward a converged state on the finer grid. The fine grid discrete solution will represent a
better approximation of the actual continuous solution compared to the coarse grid
representation.

Based on the this general numerical strategy, we have incorporated an optional
algorithm for the high-resolution calculation of flow near a blade tip into the
EHPIC/HERO code. In this algorithm, a baseline calculation using a coarse-resolution
wake representation comprised of a single tip vortex filament and several inboard wake
filaments is carried out. A representative configuration of the wake is given in Figure 3-
5. This configuration is first iterated toward a converged state with a single strong tip
vortex as in the EHPIC code. After the initial convergence, multiple copies (depending
on the desired level of resolution at the tip) of the spatial geometry of the tip filament are
made and attached to the trailing edge of the blade at stations close to but inboard of the
tip. An example of this is shown in Figure 3-6, where a converged tip filament has been
mapped inboard, resulting in a two-filament representation of the trailing wake at the tip.
Once this initial configuration is set up, the relaxation solution is recommenced and this
solution is again iterated toward a high-resolution converged state. Usually, convergence
is achieved within several steps because the error norm of the guessed solution in the
fine-grid calculation is much lower than would have been the case had two such closely
placed filaments been started "from scratch".

The two-filament case shown in Figure 3-6 is only one example of the possible
application of this technique. To date, calculations with as many as five trailers from the
tip vortex roll-up zone have been used. Additional refinement is possible within this
scheme, however computational constraints still limit full resolution of the roll-up
process, as will be discussed at the end of this section.

322 Amalgamation of multiple tip vortex filaments

In the context of the present scheme, the vortex sheet trailing from the tip,
discretized into a relatively diffuse set of vortex filaments, typically rolls up into a tighter
bundle with the filaments effectively collapsing into a single vortex tube far downstream
of the generating blade. As discussed in Section 3.1, the speed at which this proceeds
(i.e., the distance downstream required for the roll-up to be completed) scales with the
size of the tip vortex zone and the steepness of the bound circulation gradient. In general,
complete resolution of this process is not feasible, nor is it necessary in most practical
calculations of interest in the current context. A significant question then arises as to how
to compute the roll-up in a way that leads to robust convergence properties without
compromising reasonable physical accuracy. In terms of quantities of interest, such as
surface pressure distribution on the blade immediately following the generating blade, the
resolution of the rolled-up filaments once they pass by is inconsequential and the multiple
filaments can be replaced by a single filament while conserving circulation. This is also
desirable because it reduces the computation time without significantly compromising
numerical accuracy.

. In EHPIC/HERO, then, the second stage of the high-resolution tip calculation
involves a merging algorithm that amalgamates the vortex trailers and replaces the
portion of the multiple tip filaments which are beyond the first blade encounter by a
single filament. In this part of the calculation, a cross-flow analogy is used to carry out
the final stages of the amalgamation. The general three-dimensional roll-up problem is
steady in the rotating reference frame, and thus can be approximated as a two-
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Figure 3-5. Representative wake configuration of a baseline calculation with a
single tip filament.

Figure 3-6. Representative wake conﬁgmaﬁoﬁ of a fine grid calculation starting
from a converged baseline calculation; tip filament is mapped
inboard to give a multiple filament representation of the rolled-up
wake.
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Figure 3-7.Schematic illustrating the merging of multiple tip filaments
computed using a two-dimensional crossflow analogy.
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dimensional unsteady problem, with distance along the curvilinear trajectory of the
centroid of the vortex bundle being the 'time-like' variable. The use of a cross-flow
analogy in three-dimensional steady flow calculations is not new and has been
extensively exploited in the calculations of separated flow over simple bodies of
revolution (e.g., missiles) at high angle of attack (Ref. 44).

This amalgamation procedure requires that the user select an azimuthal station for
the beginning of the merging process. This station should be well downstream of both
the generating blade tip and the first blade encounter; a location halfway between the first
and second blade encounters is typically appropriate. Its exact location is computed as
the centroid of the multiple free filaments in the initial roll-up at this azimuthal station. A
trajectory starting from this point and consisting of stations along each of the multiple
filaments is then computed, with the centroid of the bundle being computed at each
azimuthal station. A cross-flow plane is then created at each station with its unit normal
vector computed from the mean tangential vectors of the multiple tip filaments at the
given station (see Figure 3-7). The multiple tip filaments are then projected onto the
plane and represented as two-dimensional vortices.

_ The time evolution of these quasi-2D vortices is computed in the cross-flow plane
by integrating the two-dimensional vorticity transport equation. A small time step size is
chosen such that several steps are executed between a given pair of stations, and a fourth-
order Runge-Kutta integration scheme is used to ensure high numerical accuracy. At
each station, the computed locations of the two-dimensional vortices give the cross-plane
location of the nodes of the vortex filaments. A separation criterion is specified in terms
of a fraction of the core size of the vortices. If the separation distance between any pair
of two-dimensional vortices at a given station is less than the separation criterion, the two
vortices are lumped into a single vortex located at their mutual centroid. The
corresponding pair of vortex filaments are also merged. Typically, merging of all the
vortices is completed within five to ten azimuthal stations.

3.3 Sample Calculation

The high-resolution tip vortex calculation, coupled with the two-dimensional time
analogy merging algorithm, have been successfully implemented in EHPIC/HERO and
several test calculations have been carried out. The focus of interest here is on rotors
whose bound circulation distributions exhibit relatively slow roll-up of the tip vortex.
Test computations have been carried out on an S-76A main rotor as well as on various
tilrotor configurations. Selected tiltrotor results are presented here since they best
illustrate the high-resolution model at work and are in fact potentially one of the most
important applications for this capability.

As stated above, computed results on tiltrotor blades often show low bound
circulation gradients near the tip, indicating that the tip vortex may be only partially
rolled up by the time it reaches the following blade. Though a concentrated tip vortex
almost always is present at the first blade encounter, the strength of this vortex tube may
well be substantially less than the peak bound circulation, and the distribution of vorticity
in the tube may be poorly represented by a single vortex. To investigate this possibility,
successively more refined multiple vortex runs were undertaken for the case of an XV-15
main rotor. Test data on the hover performance of this configuration is available in
Reference 45. The blade is 3.81 m (12.5 ft.) in radius, with a constant chord of 0.354m
(1.16 ft.). The tip speed is 234 m/s (769 fps), and the blade has roughly 37 degrees of
washout, distributed in a nonlinear fashion across the span. Detailed performance
correlation for this rotor is discussed in Section 6.
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A baseline calculation was run with the root pitch at 42.5 deg., initially employing
a very coarse wake with four free filaments trailing from the span: three distributed
evenly inboard, with a single vortex trailing from the tip (Fig. 3-8). This coarse initial
condition was chosen to dramatize the effect of the refinement afforded by the multiple
filament roll-up calculation. This very simplified wake model yields a predicted thrust
coefficient of 0.0120 and a Figure of Merit of 0.741, substantially lower than the value of
roughly 0.78 that is estimated from the measured performance data in Reference 45.
Note that to facilitate this demonstration, the tip filament was trailed from the tip of the
blade, one quadrilateral outboard of the centroid of the tip circulation zone. This partially
accounts for the under prediction of the Figure of Merit.

To improve the resolution of the tip wake, three additional filaments were added
to the high-resolution zone, which extended 75 deg. beyond the first blade encounter.
Top and oblique views of the geometry of the refined wake are shown in Figures 3-9 and
3-10, indicating the trajectories of the filaments in the high-resolution region. Each
filament uses 14 free elements subtending 10 degrees of arc in this region. An estimate
based on a computation of D in Equation 3-1 suggests that the roll-up should be complete
in roughly 150 degrees of arc, so elements of this arc length are sufficient to resolve at
least the full rotation of the tip vortex bundle. The prescribed amalgamation zone applies
the quasi-2D flow described in the previous section over 70 degrees of arc, leading to the
smooth merging seen in Figure 3-9.

The bunching of the three outer vortices, representing 87% of the peak circulation
strength, is evident in the figure, and allows a more realistic representation of the flow
field in the vicinity of the blade. The gross features of the roll-up process are captured,
and the improved resolution is reflected in the improvement in the predicted performance;
a Figure of Merit of (0.772 at a thrust coefficient of 0.0121 is predicted, close enough to
the measured performance curve to be within the scatter of the data. Figure 3-11 shows a
comparison of the predicted thrust distribution along the span, indicating the sharper peak
that is associated with the implementation of the high-resolution wake model.

As indicated by these calculations, the high-resolution multiple vortex model
presently in place has a substantial capability to obtain refined computations of the wake
trailing from the tip region. However, certain computational limitations still restrict the
applicability of the present model. The trailing wake should in principle be represented
by a continuum of trailing filaments rather than by the relatively coarse discretization
used here. Adding filaments will drive up the CPU time, but it is more the issue of
robustness that is of most concern. At present, selecting the vortex core radius to be 1.0
to 2.0 times the distance to adjacent filaments in the high-resolution region produces
generally consistent, well-behaved results. However, additional spanwise refinement
brings a requirement to introduce still smaller azimuthal segments to properly resolve the
wake-on-wake interactions. This leads in general to greater difficulty with convergence,
though this situation can be aided substantially if the limitations on wake-on-wake
velocity discussed in Reference 12 (see the input parameter ICON) are invoked. For
highly refined wakes, though, the overlapping of filament cores becomes inadequate, and
a higher order model should be used, possibly including vortex sheet elements.

In addition, this type of inviscid roll-up model is appropriate only to resolve the
larger scales of the vortex formation process. Refinement of the order of less than a few
percent of core radius requires implementation of a direct model of viscous and turbulent
flow within the core, as discussed in Section 2.7. To date, adding this level of refinement
has not proved cost-effective for the performance optimization applications explored

here.
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1 Filenenlts 4

Figure 3-8. Top view of the initial coarse-resolution solution for the XV-135 rotor
(wake of one blade only shown).

\ Fllements 7

Figure 3-9. Top view of the converged high-resolution wake geometry solution
for the XV-15: four filaments used in the high-resolution tip zone
(wake of one blade only shown).
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Figure 3-10. Side/oblique view of the converged high-resolution solution for the
XV-15 rotor (wake of one blade only shown).
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Figure 3-11. Bound circulation distribution with initial coarse-resolution and
final high-resolution wake models for the XV-15 case.

32



3.4  Side-edge Separated Flow Modeling

In the present effort, an approximate method for computing the effect of flow
separation on the side-edge of a blade has been developed. In general, this is a viscous
phenomenon whose details cannot be computed with the present inviscid model. The
motivation for this particular feature of the model was to attempt to develop a simple
model that quantifies the likely effect of the 'lift-off" of tip vortices from the blade edge,
and to permit the user to assess its importance in particular cases.

The present method represents an extension of the two-dimensional cross-flow
calculation developed for the merging of multiple vortex filaments, as described in the
previous section, to the edge flow problem. In this calculation, the cross-flow analogy is
applied to the treatment of the flow along the side-edge of the blade, and the three-
dimensional steady separated flow is computed as a two-dimensional unsteady separated
flow problem. In this case, cross-flow planes are computed which are in-plane with the
unit normal vector p of the blade surface and the radial direction of the blade (Fig. 3-12).
The plane is placed along the edge of the blade and the flow velocity normal to the blade,
resulting from the angle of attack of the blade airfoil, is projected onto the plane. This
results in a two-dimensional unsteady problem involving a flow past a flat plate normal to
the flow direction. Time integration of this two-dimensional problem gives the location
of the separated vortex along the side edge of the blade. At t=c/Uos, where ¢ is the chord
length of the blade and Ue is the projected free-stream velocity in the two-dimensional
case, the two-dimensional calculation gives the location of the separated vortex near the
trailing edge of the blade, which is used as an attachment point for the tip vortex in the
three-dimensional case.

Unsteady separated flow past a normal flat plate is a classical problem that has
been extensively studied (Refs. 46 - 48). The work of Pullin (Ref. 48) is of particular
interest and can be directly applied to the present calculation. In his model, the self-
similar rolled-up vortex sheet emanating from an impulsively started flat plate is
computed. Based on his self-similar results, it is straightforward to derive the following
relgti_on between the location of the separated vortex and the total circulation in the vortex
and time:

7 {.LL (3-2)

42.64

where Z is the height of the vortex above the blade, I is the circulation of the vortex and t
is time. This relation suggests that given a vortex with known location and circulation,
the locations of all other vortices with different circulations can be estimated based on
this similarity.

}IIZ

This has been tested by computing the separated vortex of a two-dimensional
normal flat plate. Two separate flow configurations were examined, which resulted in
two vortices of different net circulations. It was found, however, when the coordinates
are properly scaled, the two vortices appear to be similar, with nearly identical locations.
This is shown in Figure 3-13a and 3-13b and the similarity argument is well proven. This
similarity relation considerably simplifies the implementation of a simple side-edge
separation model in EHPIC/HERO since we need only to compute the location of the
vortex once (at the first step for a given blade pitch angle); at all subsequent iterations,
the location is obtained by using the scaling in Equation 3-2. The effect of this model
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Figure 3-12. Schematic showing blade and cross flow plane at side edge of blade.
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when invoked is to alter the vertical release point of the tip filament. The inputs required
for this model are described in Reference 12.
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4. FORMULATION OF THE ROTOR BLADE STRUCTURAL MODEL

The structural properties of the helicopter blade are in many cases important to the
evaluation of the performance of a helicopter in forward flight. Thus, one of the major
efforts within the development of the EHPIC/HERO code has been to incorporate a
realistic finite element (F.E.) representation of the blade. This section discusses the
formulation of the structural model together with its capabilities and limitations and the
manner in which it is coupled to the aerodynamic wake model. Further description of the
inputs required for this portion of the analysis are given in Reference 12.

4.1 Finite Element Structural Model of the Helicopter Blade

The particular finite element (F.E.) model used here to represent the helicopter blade
accounts for extension, twist and transverse bending displacements. To accurately
simulate these deformations, the blade is discretized into a number of beam finite
elements each having a total of 14 degrees of freedom (d.o.f.). Stiffness properties for
each element are computed from the cross-section geometry and material properties
supplied by the user. Similarly, the blade mass distribution is used to both define the
nodal forces due to blade rotation and also the contributions of blade rotation inertia
forces to the stiffness matrices (geometric stiffening). The resulting elemental stiffness
matrices are then assembled and any constrained d.o.f. eliminated to finally yield the
global stiffness matrix for the complete blade structure. The approach taken is similar to
previous implementations of F.E. methods for rotorcraft applications, such as Reference

The transfer of information between the structural and the acrodynamic models is
achieved by requiring force equilibrium and by specifying the kinematic relations that
define the blade geometry in terms of the undeformed blade shape and the vector of nodal
deflections. In essence, nodal forces, £, are computed from the distributed aerodynamic
forces and the blade rotation. The steady state deflections are determined by solving the
linear system of equations, [K]s=f. Finally, the deformation vector is used in conjunction
with the undeformed blade geometry to furnish the deformed blade geometry. The
geometry update perturbs the flow-field which in turn alters the nodal forces. Thus an
iterative process is invoked until convergence is attained. This iterative process is done
in parallel with the wake relaxation calculations so that the entire process essentially
converges to the final deformed blade and associated flow-field. The remainder of this
section explains in greater detail the derivation of the structural model and the manner in
which it is coupled to the wake model.

4.1.1 Assumptions
The assumptions inherent in the blade model and geometry are stated below:
* The blade displacements are of sufficiently small magnitude that:
- linear constitutive relations between stress and strain are applicable,
- the transformation matrix relating the local axes of each element may be

regarded as constant and equal to the corresponding matrix in the
undeformed state, :
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- rotations due to deformation are assumed to commute, and,

- the twist, bending and extension deformations may be linearly
superimposed.

* The blade material is assumed isotropic and the stress-strain relation obeys
Hooke’s law.

* The elastic axis for each element is defined. The elastic axes of any two
adjacent elements coincide at their mutual joining section (see Fig. 4-1). In
other words, the elastic axis is continuous along the blade. This is necessary to
correctly define the assembly of the individual blade F.E. s.

* The principal axes of the cross-section for each element are assumed to be
perpendicular to the elastic axis of that element. This implies that if there are
sweep and anhedral changes between consecutive elements then their principal
axes will not coincide at their mutual section. The degree of approximation
introduced into the bending calculation will increase with the amount of sweep
and anhedral change between adjacent elements. It will also decrease with
slenderness of the element since the discrepancies resulting from non-alignment
of the principal axes occur locally in the neighborhood of the joining section.

Note that the last two assumptions are mainly due to the fact that warping effects are
modeled in the analysis. One of the chief advantages of the finite element method is its
versatility in the assembly of the constituent elements. For simple elements, e.g., pure
beam elements and bar elements, one is free to assemble the components in whatever
- orientations one chooses. Furthermore, discontinuities in the mass and stiffness
properties from element to element are permitted. However, when modeling warping
deformations the line of shear centers, or elastic axis, plays a significant role. The current
formulation approximates the elastic axis by a sequence of straight line segments and it is
the desire to accurately represent the elastic axis that results in the preceding last two
assumptions. Thus to the extent that warping effects are significant, failure to satisfy the
last two assumptions and suitably approximate the elastic axis leads to error in the
solution. In most cases however, and for the closed tubes representative of helicopter
rotor blades, warping effects will be dominated by deformations arising from pure
bending and torsion, and thus violation of these assumptions will not lead to significant
error. This has been verified by numerical testing of the F.E. model for loaded structures
containing 90° elbow joints and discontinuities in the beam stiffness properties.

4.1.2 Blade geometry

Each of the blade segments defined in the EHPIC/HERO blade geometry input
corresponds to a single structural finite clement. This is assumed to be adequate for the
hover situation where static deflections are sought. The global axes for the assembled
blade are denoted by XYZ corresponding to the blade axes defined in Figure 2-5. Local
axes, xyz, are defined for each element such that the x-axis coincides with the elastic axis,
or the line of shear centers, of the element. Axes y and z are derived from the
transformation applied to the global Y and Z axes as described below. The
transformation matrix relating the local element axes to the global axes is derived from
the local segment layout specifications. The segment geometry is specified as follows
(see Fig. 4-2):
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Figure 4-1. Correct and incorrect alignment of the elastic axis (E.A.)
between adjacent elements.
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Figure 4-2. Sequence of rotanons to go from blade axis system (X,Y Z) to
local element coordinate system (x,y,z).
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(1) The planform is first defined. Each blade segment has length, SL, along the

global X-direction and chord length, c, in the global Y-direction. The sweep, A, defines
orientation of the quarter chord line for the segment. Note that for non-zero sweep, the

length of the finite element along the quarter chord length differs from the length
measured along the blade X-axis. If one finite element is associated with each blade

segment then the element length shall in fact be:

l = SL 4-1)
cos Y

where ¥ is the anhedral (see step 3 below).

(2) A camber and then a pre-deformation twist gradient are defined over each
segment. This information is not included in the transformation matrix since any effects
due to camber and pre-twist upon structural properties can be more accurately specified
in the information on blade cross-section properties (see Reference 12). Addition of
camber would be reflected in the cross-sectional moments of area and pre-twisting would
affect primarily the orientation of the principal axes. These parameters are directly
specified in the blade cross-section input file discussed in Reference 12.

(3) Anhedral is then applied to each segment about an axis parallel to the global
Y axis and passing through the left hand end (nearest to the rotor hub) of the segment.

The direction of this rotation is in the negative Y-direction., i.e., positive anhedral, ¥,
results in the blade drooping down.

4 VFinally, collective pitch in the form of a rotation about the global X-axis is
applied to the assembled structure.

This sequence of rotations is used to define the transformation matrix relating the
local axes to the global ones of the EHPIC/HERO code. An additional 180° rotation
about the global X-axis precedes the above rotations since the local finite element z-axis
is positive upward whereas the global Z-axis is positive in the downward direction. The
preceding parameters are supplied in the blade geometry input file.

From the above sequence of rotations the local and global axes are related by:

X X0 X
{Y} = {Yo} + Tc TyTA T180° {Y} (4-2)
Z Zy z

where T1g0°, TA, Ty and T, are the transformation matrices corresponding to the 180°
rotation, sweep, anhedral and collective operations respectively, and the coordinates,

X0oY0Z( , are the global coordinates of the origin of the local axes. Here the origin lies
on the elastic axis at the end of the element nearest the rotor hub. The combined matrix,
CFA. opA
[Tr)=Tc TyTAT180° = | CcSA-ScSEA -CcCA-SSYA ScCy (4-3)
SCSATCCSYCA -ScCAFCCSYSA -CcCy
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where s(.) and c(.) denote sin(°) and cos(*) respectively. Note that the rotations due to
deformation can also be referred to the global axes using this transformation since the
deformations are assumed small and the rotations thus commute.

4.1.3 Element degrees of freedom

The specification of the shape functions and the fourteen degrees of freedom of each
element is summarized here. Each element has two end nodes and one node at its
midpoint, as shown in Figure 4-3. The degrees of freedom correspond to translational
and rotational deformations at these nodes. The deformation of the element at any point
is estimated by interpolation of the nodal displacements using the shape functions. Let u,
v,and w denote the displacements along the local x, y, and z axes respectively and let

0 denote the twist deformation about the x axis. Then the generalized displacement
vector is defined as:

qi v((()()))’ qas W((()()))
. q_2 _ v»x . q6 w’x
Lag. Q3 = v(l) e Flap. q7 w(l)
a4 V,x(l) J qsg va(l)
q9 0(0) q12 u(0)
Twist: 1410 ¢ = § 6(1/2) Axial: { qls} = { u(1/2)} 4-4)
q11 o) J q14 u®d -

where the subscript (¢),x denotes the derivative with respect to the local x axis
coordinate and 1 is the element length. Thus q; and q refer to the displacement and
corresponding slope due to bending in the y-direction at the left hand node. The
corresponding right hand node deformations are q3 and q4 , and so forth for the other
displacements. Note that the slopes, v,x and w,x , can be regarded as a small positive
rotation about the local z-axis and a small negative rotation about the local y-axis
respectively.

The transverse displacements, v and w, are interpolated using cubic Hermitian
polynomials as is the common practice in beam finite element formulation. Quadratic
polynomials are used to interpolate the torsional and axial deformations. This is the
simplest element interpolation scheme yielding a consistent formulation for coupled
torsion-bending (Reference 49). Specifically:

q1 a5
v = (@3)T§ o2 wx) = (@3)T S
a4 q8
T q9 q12
8 = (®2) {qxo} u(X)={¢z]T{QI3} *5)
q11 q14
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Figure 4-3. Definition of finite element degrees of freedom and schematic of
the element ordering scheme.
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and E=x/1 . The preceding relations may be expressed in compact form as:

v((x)
wi(x)
u(x)

where {q} is the vector of generalized displacements and [ ® ] is a (4 x 14) matrix
appropriately constructed from Eqs. (4-5) and (4-6).

Finally in the formulation of the elemental stiffness and mass matrices it is valuable
to define principal axes of the cross-section, 1} and {, which are oriented such that:

AJnCdA =0 (4-8)

The angle B is then the angle between the local y and 1 axes.

The global degrees of freedom are obtained by resolving the deformations along the
global axes using the transformation matrix derived previously. At an end node, all of the
three translational and three rotational d.o.f. are available (since the slopes of the
transverse bending displacements correspond to rotations). Thus, the translation between
the local element d.o.f.s and the global ones is achieved using the transformation matrix,

Trot ¢
U u Rx 0
{V}=[Tm¢]{v} ; {RY}=[TM] “W,x (4-9)
W w RZ

Vix

where Ry, Ry, and Rz, are rotations due to deformation about the global XYZ axes
respectively. At the mid-node the preceding translation is more involved since only two
d.o.f., the twist and axial deformations, are available in the local axes and additional
constraints are necessary to uniquely define the twist and stretch in the global directions.
One approach would be to specify the four remaining local d.o.f at the mid-point by
interpolating from the end-nodes using the element shape functions, i.e. evaluating
v(1/2), w(I/2) and their slopes using Eqgs. (4-5)-(4-7). These together with the local twist
and extension deformations completely define the six local displacements from which the
global deformations readily follow. However, it was found that this led to numerical
problems in the resulting transformation matrix, since the complete element is singular
for certain blade geometries. This might be expected from the observation that 18 global
displacements (6 at each node) have been defined in terms of only 14 element d.o.f.
Hence, the inverse transformation from global to local deformations is in fact non-unique.
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The approach taken here is to simply define the global deformations to coincide with the
respective local ones at the mid-node, i.e.,

{5, ~ laish, @0

This both simplifies the transformation and results in an orthogonal element
transformation matrix, i.e., if the elemental transformation which will be composed of

elements of [Ty, is denoted by [Tgr] so that gg = [Tg ] then [Tgrl ! =[Te! .
An alternative procedure would be to eliminate the mid-node d.o.f. using static
condensation. However, this is unnecessary in light of the small number of d.o.f.s of the
fully assembled model, the additional programming complexity and the further
approximation that would thus be introduced.

4.1.4 Derivation of the element strains and stresses
In order to compute the elemental stiffness matrix the strains arising from the

preceding displacements must be evaluated. The nonlinear expressions for the strains are
stated:

exx = U+ (PO )+ (12 +12) 0,2
+ % vix2 - Vixx { Ncos(B+8) - {sin@+6) )

+ 2 W2 - Woxx { {coS(B+6) + 7 sin(B+6) ) (4-11a)
‘YXT] = 28x‘n = (q‘ﬂ’]'c )(9,x+9n1) (4-1“))
Yxt = 2&xf = (¥.[+M)(6,x+6n)) (4-11c)

and all other strains are assumed zero. Here, Op] is a nonlinear second order torsion

term, and W (x,n,) is the Saint Venant warping function expressing the out-of-plane
displacement, uyarp , due to torsion:

Uwarp(xan’Q = \P(X,Tl sc.b) e,x (4'12)

The linear expressions are easily obtained from above:

Exx = Ux+(¥Ox ) o , ,
- Vixx {ncosB-LsinB ) - wixx {LcosBp+nsinB)  (4-13a)
Ten = (Pm-0)0x 5 WL = (Br+M)64 (4-13b,c)



These strains are expressed in terms of the vector of generalized d.o.f., {q} , and the
shape functions and their derivatives w.r.t. x, by substituting for the occurrences of u, v,

w, and O using the expressions, Eqgs. (4-11)-(4-13). This results in:

- [mcosB - LsinB ] (®3)
- [Leosp +msinf ] (@3')

L A S
(@2}
= (81} (@) (4-14a)
0 T
) o
Tl ¥,p+m {‘%2 }
{Bz]T} 4
= -14b,
{ B3)T {a} ( c)
The corresponding stresses are derived from the Hooke's Law:

Oxx = E &xx (4-15a)
q,m = G}Sm ; Oxf = nyc (4-15bc)

4.2 Derivation of the Equations of Static Equilibrium

The discussion above defines the relationships for stresses and strains for the current
F.E. formulation. The required equilibrium equations are obtained via the principle of
virtual displacements where virtual work expressions are constructed by considering the
internal and applied forces subject to virtual displacements. In this framework, the usual
material stiffness properties are represented by an internal virtual work expression, W1,
which in this case is equivalent to the variation of the strain energy expression. Since the
internal virtual work can be written down directly, it is unnecessary to execute the
intermediate step of obtaining an expression for the strain energy. The rotating XYZ
reference frame gives rise to both inertial forces and geometric stiffening which can both
be conveniently represented by an external virtual work term, W€, The aerodynamic
forces computed in the wake analysis constitute a further external virtual work term.
Finally, the equations for static equilibrium are obtained by equating Wi=We,

The structural stiffness matrix K is composed of three terms, Kg, Kg, and Kg,
where Kg is the usual material stiffness matrix obtained from the internal virtual work,
and Kg and Ky are contributions due to the blade rotation. Kp is due to the centrifugal
loading. This distributed inertial load gives rise to both a nodal force vector due to blade
rotation and also a softening of the blade. The latter is physically due to the fact that
displacement of a blade element places it at a different radial location and therefore alters
its Joading. A simple éxample of this is the case of deformation along the X-axis, u, at a
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radial location, r, for a blade rotating with angular velocity, Q. A deformation u increases
the centripetal acceleration from Qr2 to €(r+u)? with a proportional increase in loading.

This load increase induces a further displacement, 8u, and in the linear F.E. model is
equivalently accounted for by Kr. In the steady state deflection case for hover, KR is
obtained by developing an external virtual work term for the virtual displacements in the
presence of the distributed centrifugal forces. The contribution Kg accounts for the
geometric stiffening due to the axial tensile loading induced by blade rotation. The
geometric stiffening plays a major role in the range of angular velocities typical for
helicopters. This effect is analogous to the buckling problem where the axial force is
compressive and generates internal distributed moments when the blade deforms.

For simple blade bending examples the blade stiffening effect, Kg, is found to be
twice the softening contribution, KR, leading to a net increase in blade stiffness, as is

clearly the expected behavior. K is derived by expressing the forces and moments due
to rotation explicitly and regarding these as externally applied loads that are accounted
for by an additional external virtual work term. The external virtual work expression then
results from these applied loads undergoing virtual displacements. This approach is
frequently adopted in buckling analysis and bending and torsion problems where axial
forces are present.

4.2.1 Construction of Kg

The internal virtual work due is given by:
wi = V|' Oxx * Bexx + Oxn * O + Oxk * Srxt dV (4-16)

Substituting for the stresses and breaking up the volume integral:

wi = Jl {A[Eexx-aexx + Gkn * S%n + GKe * Srxe dA ) dx
4-17)
Substituting for the strains using Eq. (4-14) and performing the integrations results in:
W = 5T [Kg]g (4-18a)

where the desired stiffness matrix is

1
Kg = J {J E{B1}{B1}” +G ({B2}{B2}" + {B3}B3}T) dA }Jax
(4-18b)

The construction of Kg requires a sequence of integrations, the first being an area
integration over the area of cross-section at a given station, x , along the element, and the
second being the integral along the length of the element. Evaluation of the area integral
results in expressions containing various properties of cross-section multiplied by the
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shape functions and their derivatives w.r.t. x . These properties include the cross-
sectional area, moments of area, area centroids relative to the 1 and { axes, and a total

of nine integrals involving the warping function, ¥. The finite element implementation
employed in EHPIC/HERO does not compute these properties, but instead requires that
the various cross-sectional area integrals be input directly via the blade cross-section
input file. The finite element code requires that these properties be specified at the end
nodes of each element and assumes that they vary linearly between the end nodes. The
final integration along the element length involves products of the shape functions and
their derivatives and is effected numerically using Gaussian integration. A list of the
cross-section area integrals required in the analysis is given in Reference 12.

4.2.2 Construction of KR and frot

In order to determine the contributions to the stiffness matrix and the nodal forces due
to blade rotation one first defines the position vector of a point on the blade in blade
coordinates,

RX.Y,Z) = XI+YIJ+ZK

X XO Xje T U
or, { Y } = { Yo} + [Trod { v+1cos(B+6)-Lsin(f+0) } (4-19a)
Z ZH wHT]sin(B+6)+{cos(B+6)

which in local coordinates is,

x Xo Xje +U
{ Y} = rrmJT{ Yo} + { v4ncos(B+6)-Lsin(B+0) } (4-19b)
z w+nsin(B+8)+{cos(B+6)

where X;e is the distance along the elastic axis of the element containing the point. Then
the body force at any point on the blade due to rotation is:

f=-pQRx ((2K)x R} (4-20)
where p is the density of the blade material, and the unit vectors are aligned with the

gizbal axes. When expressed in the local coordinate system of a particular element, this
omes,

fx Xo 100 Xje + U
{ :y } = Qz[Trox]T { Yo} +[ 010 }[Tm] { v+ncos(B+6)-Lsin(B+8) }
z) 0 000 w+n sin(B+8)+{cos(B+6)
(4-21)

The moment about a point on the element elastic axis, Reg = Xeal+YealtZeaK , due to
the rotational force acting on a volume element located at R somewhere on the blade is,
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m = (R-Rea) X dA dx - (4-22)
The net forces and moments at a point on the elastic axis defined by x., are:

R
E = f { AI fix,y,z)dA } dX (4-23a)
Xea

R
M= J' { A[ [RX,Y.Z) - Rea(Xea,Yea:Zea)] x £(X,Y,Z)dA } dX
Xca

(4-23b)

where R is the value of Xaa at the blade tip. The domain of integration extends from
Xea to the blade tip since the net force and moment vectors vanish at the blade tip.

The external virtual work for the inertial forces is obtained by considering the body
force due to blade rotation, f£ , as a distributed external force. Imposing virtual
displacements upon the blade under this distributed load results in the formation of the
external work term:

1
ch = 6{ J fySu + fy8v + 70w + (yf - ny)59 dA dxje (4-24)

b’le'{lc remaining procedure is laborious, but straightforward and is briefly summarized
ow:

* Resolve Egs. (4-19) to (4-24), in the local element coordinate system.

* Substitute for all occurrences of u, v, w,and 0, and their derivatives using
Eqgs. (4-5) and (4-4).

*» Replace sin(B+6) and cos(B+08) by the small © approximations.
* Substitute for { in Eq. (4-24) and discard all terms of order higher than 2.

* Carry out the cross-section area integrations. As in the computation for Kg, this
area integral can be directly expressed in terms of certain cross-section
properties. Since the blade material density, p, is now present in the analysis
these cross-section properties will be quantities such as the mass per unit length,
cross-sectional center of mass, torsional moment of inertia per unit length, etc.
The complete list of parameters needed is given in Reference 12.

* Finally, evaluate Eq. (4-24) from xj¢=0 to x;je=Il using Gaussian integration.
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The resulting integral assumes the form,

, ) 1
Wy = -quazof [Aql q- (Bo) dx
or,  Wp = 8T (-[Krlg+fo) (4-25)

where the contribution to the stiffness matrix,

1
Kg = Q2 J [Ag] dx (4-26)

and the nodal force vector due to the centrifugal forces,

1
frot = 2 J (B} dx (4-27)

4.2.3 Construction of Kg

The virtual work expression for the net blade rotation forces undergoing virtual
deformations that accounts for the geometric stiffening effects is stated (see Reference
49):

1
W = J {Fx (vVB'+w'dw) + My 5(v"6) + M, &(w"8)

+ QO'6(8" + %Mx d(v"w'-w"v') } dxje (4-28)
Here,

Q =%4Fx(y2+z2)dA (4-29)

and the terms, Fx, My, My, and M are simply the local components of the net forces

and moments due to rotation summed over the portion of blade lying outboard of the
point xje on the elastic axis. Note that the first term in Eq. (4-28) represents the usual

additional stiffening due to an axial force. The virtual work contribution for this first
term may be viewed as a differential moment arising from structural deformation,

dM; = Fx(v'dx) and dMy = Fx(-w'dx), moving through virtual rotations, 8v' and
o(-w") .

Eqs. (4-19)-(4-23) and (4-28)-(4-29) contain all of the information necessary for the
computation of [ Kg ]. Again the actual computation is laborious, but straightforward.
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One begins by substituting for f, my, Fx, M, and Q in Eq. (4-28) and discarding all
terms of order higher than 2. The sin(*) and cos(*) are replaced by their small 6 angle

approximations, and the occurrences of u, v, w,and 6 are evaluated from Eqs. (4-4)
and (4-5). The cross-section area integrations are performed to define mass moments of
area. Finally, use of integration by parts where possible simplifies the integration along
the element from xje=0 to xje=! of Eq. (4-28). For example, the first term,

1 Xie Xie=l
J {Fx (v'Ov'+w'dw') dxje = [Fx(xic) Jv'ﬁv'+w'8w'dpJ
Xje=0
1
Xie

+ fx[J (vOv+wdw' ) dp} dxie (4-30)

The quantity (v'dv'+w'dw’) is easily evaluated from Eq. (4-7) in terms of the element
shape functions and the generalized vector of nodal displacements, g . Thus the integral
contained in the brackets {*} can be written down analytically. The final integration
along the element from x;e=0 to xje=1 is done by Gaussian integration. and results in,

We = -8 [Kglq (4-31)

where the geometric stiffening matrix, Kg, is proportional to Q2.

4.2.4 Computation of facro

The coupling of the structural model to the aerodynamic wake analysis is achieved by

cvaluating the nodal force vector, f2¢10, due to the distributed acrodynamic forces and
moments. The associated external virtual work term is derived in a very similar
procedure to that used in developing the rotational force vector, ffot. The wake analysis
presents the finite element routines with an array, QFRC(iseg,ic.k), which represents the
aerodynamic force on chordwise panel, ic, of blade segment, iseg, in the global blade axis
direction, k. The index k=1,2,3 denotes the acrodynamic force in the X, Y, Z directions
respectively (thus k=2 denotes the drag and k=3 the negative of the thrust for the
chordwise panel), and k=4 represents the acrodynamic pitching moment about the X-axis.

To derive the corresponding nodal forces, the acrodynamic forces per unit length is
first obtained by dividing entries of QFRC by the panel width, dX. The resulting vector
is rotated into the local reference frame to obtain local forces and moments per unit

length,
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fo m, |
fa= f; © md= m; (4-32)
f, m,

The external virtual work expression for the acrodynamic forces is then (c.f. Eq. (4-24))

1
Wi = J f:8u + f;ﬁv + 26w + m250 + ms,a5(-W’x) +mi3(v,x) dxie
(4-33)

which is evaluated as before by substituting for the deformations, u, v, w, and 6, and
numerically integrating to obtain,

WS = 8qT fero (4-34)

4.2.5 Equations of equilibrium

The derivation of the virtual work terms is now complete. The equations of motion

follow immediately from equating the internal and external virtual work terms, Wi=We,
using Egs. (4-18), (4-25), (4-31), and (4-34):

8T [Kglq = 8q7 (-[Krlg+f™) -8q [Kglg + 8qT fro
or, since the virtual displacements are arbitrary,

[Ke+Kr+Kg]gq = fot + faero (4-35)

4.3 Assembly of the Global Stiffness Matrix and Forces

The preceding equation, Eq. (4-35), implies an assembly process of the individual
element stiffness matrices and nodal forces into a corresponding global stiffness matrix
and applied force vector for the complete helicopter blade. The assembly process
involves three sub-procedures: the first involves referring the elemental matrices and
nodal forces to the global axes, the second defines the array indexing that relates the local
degrees of freedom for each element to the global ones, and the final step entails
implementation of the boundary conditions at the blade root.

Rotation of the element matrices and nodal forces into a global coordinate frame is
accomplished in the standard manner:

[Kgloball = [Tl [Kiocal 1 [TeT (4-362)

{f™} global = [TaL {£*}1ocal (4-36b)
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{*®}global = [TgL) {£*"Hocal (4-36¢)

as may be easily verified by noting that the potential energy and the virtual work are
independent of the choice of reference frame. Here, [Tgp] is the transformation matrix
described in Section 4.2 relating local d.o.f., g, and global generalized d.o.f., §:

s=[TgLlg

The blade elements are then laid end to end in sequence from blade root to blade tip.
Global deformations are defined as outlined in Eqgs. (4-9) and (4-10). However, the
ordering of the global degrees of freedom is different from the local ones, Eq. (4-4).
Each clement degree of freedom is associated with a global one via an indexing array or
splay matrix, C(k,ic) , where k is the local degree of freedom (k=1,2,...14), ie is the
element number, and C(k,ie) is the global degree of freedom. Having specified a C(k.ie)
for each element then the global matrices may be constructed by “splaying’ components
of the elemental mass and stiffness matrices into their corresponding positions in the
global matrices. For example, the [i,j] entry of the elemental stiffness matrix for finite
element, ie, is added to the [ C(i,ie),C(j,ic) ] entry of the global stiffness matrix. In like
manner, the global nodal force vector is built up from nodal forces for each element.

It remains to specify the actual ordering of the global degrees of freedom. Degrees of
freedom are numbered upwards starting at the blade root. Using the definitions for global
displacements and rotations given in Section 4.2, Egs. (4-9) and (4-10), the global
degrees of freedom are summarized in Table 4-1 (see also Fig. 4-3).

The construction of the global stiffness matrix is completed by imposing the
boundary conditions at the root. For articulated blades, it is implicitly assumed in
EHPIC/HERO that the blade is freely hinged in both flap and lag directions, but that the
remaining degrees of freedom at the root - the three translational displacements and the
twist about the X axis - are constrained. The boundary conditions are implemented by
simply deleting the rows and columns of the global stiffness matrix corresponding to
these four degrees of freedom. For cantilevered blades, by definition all root
deformations are zero and thus all six degrees of freedom at the root must be removed.

4.4 Solution of the Structural Equations

For a given nodal force vector, f=frot+faero_it is required to solve the finite element
equations,

Ks=f | (4-37)

for thc global deformanon vcctor 5. Thc 1tcrauve solunon proccss whcrcby the final
deformed blade geometry and associated wake structure are obtained, gives rise to a
series of nodal force vectors, f, which changes as the flow-field is updatcd For a fixed
undeformed blade planform [K] remains unchanged so that Eq. (4-37) is repeatedly
solved for a sequence of right hand sides. The LU decomposition procedure is most
amenable to this type of problem since the LU decomposition of [K] need only be
performed once. The solution § for any fls thcn obtamcd by a computatlonally cheap
backsubstitution procedure.

The end-to-end layout of the beam elements and numbering of the d.o.f. results in a

banded stiffness matrix with maximum bandwidth, mb=22. In EHPIC/HERO, the non-
zero elements of [K] are stored in an array B according to,
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B(j-i+14, i) = [Kljj (4-38)

This is the storage form required by the pair of efficient banded LU decomposition and
backsubstitution subroutines DECB and SOLB of Reference 50. The LU decomposition
is performed once by calling DECB immediately subsequent to the construction of the
array, B. The nodal deflections are then obtained for each of the nodal force vectors by
the backsubstitution routine SOLB.

For certain wake layouts and blades, the iterative process has been observed to
become unstable, particularly for high resolution wake models or relatively soft blades.
This is believed to be due to the change in structural deformation, and hence the blade
geometry, that takes place between consecutive iterations. If this change is too large,
kinks in the trailing filaments develop and undermines convergence. To counter this

possibility, the maximum change in deformation state during an iteration, As, is limited
by the parameters DLD and DLR supplied by the user. Here DLD is the maximum
change in displacement deformation between EHPIC/HERO iteration steps, and DLR the

corresponding maximum change in rotation deformation. If any element of Ag is found to
exceed these limits, then the whole vector, Ag, is scaled so that the maximum change
requirement is satisfied. The deformation state is then updated, s¢-§+Ag, using the scaled
version of As. This limiting is not applied during the initial relaxation since this portion
of the calculation tends to be relatively insensitive to characteristic changes As.

Since the overall process is iterative, a tolerance parameter, analogous to those used

to test for wake convergence, is supplied to verify that the structural computation has
converged. The required test for all i takes the form:

displacement deformations: As; < CONVGS * R (4-39a)
rotation deformations: Asi < CONVGS (4-39b)

where CONVGS is the user supplied tolerance parameter.

4.5 Update of Blade Geometry

The coupling of the structural model is completed by specifying the relation between
the global deformation vector, s, and the geometrical parameters used to specify the blade
layout. As described in Reference 12, the blade geometry is defined by the variables:

SL(iseg) - segment X-length

SWEEP(iseg) - segment sweep

TWG(iseg) - segment twist gradient

TWR(iseg) - twist at left hand end of segment
ANH(seg) - segment anhedral

CHORD(iseg) - chord length at left hand end of segment
COLL - blade collective.

In EHPIC/HERO, the undeformed versions of these quantities are input by the user and
for optimization problems represent the design variables. The blade layout routines
require the deformed quantities which are obtained by superimposing the deformation
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vector, §, upon the undeformed shape. Table 4-1 summarizes the information contained
in the vector, §. Denoting the variables at the left hand end of a segment by ()L, those at
the right hand end by (*)r, and the undeformed geometry by ()p, then the deformed

geometry,

SL = SLo + UL - Ur

SWEEP = SWEEPg + AVSO*cos(COLL) + AVGO*sin(COLL)

TWG = TWGp + [ Rx)L - Rxr]/SL

TWR = TWRg + (RX)L

ANH = ANHg + AVGO*cos(COLL) - AVSQ*sin(COLL)

CHORD - unchanged by g

COLL - unchanged by §

(4-40)

where, AVSO = [ RpL+®R2R]

AVGO = - 3 [ Ry + Ryir]

This takes into account the global rotation about the X-axis of the entire blade when
applying the collective after the blade planform has been defined.

4.6 A Note on the Wake/Structure Coupling Matrix
The structural equations, Eq. (4-37) can be expressed as,

Af=( f-Ks) = K4s (4-41)

where the deformation is updated s«s+As. This can be combined with the wake
equations so that,

Agq Qux Qqy 0] [4x
Aw: = |Qux Qwy 0|54y (4-42)
Af 0 0 K||As

The left hand side residuals formed from nonlinear equations are driven to zero by an

iterative process that amounts to a Newton method for updating the x., Y, and §. The right
hand matrix of first order linear derivative terms does not reflect the coupling between the
aerodynamic and structural equations and so the question arises as to whether the
coupling terms should also be derived. Note that the accuracy of the analysis is entirely
dependent upon the computation of the left hand vector of Eq. (4-42). The implicit
coupling of the two sets of equations is also embodied in the left hand terms. The role of
the right hand side matrix is to enhance the convergence of the iterative scheme providing
superior stability and rate of convergence to the overall scheme. Thus, provided that this
goal is achieved, one is at liberty to make approximations to its clements. ,

Our experience indicates that neglecting the block off-diagonal coupling matrices is
both an adequate and desirable approximation. Earlier version of the code included the
off-diagonal coupling terms which were derived at considerable computational cost. It
was found that the overall rate of convergence was minimal when compared against the
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present case with matrix coupling entries neglected. Furthermore, the robustness of the
overall solution scheme was comparable in both cases and was found to be best
controlled by specifying the parameters DLD and DLR in sensitive cases. The
approximation is very desirable for several reasons: 1) Evaluation of the off-diagonal
terms is very expensive in computer time and requires substantial storage space; 2) The
advantages of the efficient banded LU decomposition scheme described in Section 4.4 are
forfeited. Instead, the Gaussian elimination scheme employed in EHPIC/HERO for
solving the N wake equations is now applied to an (N+NF)*(N+NF) array where NF is
the no. of degrees of freedom in the structural model. Hence the number of operations
involved in Gaussian elimination increases from ON3) to O([N+NF]J3). 3) There is a
substantial reduction in coding complexity. 4) For optimization studies, the effects of
structural deformation are more efficiently incorporated by recomputing the structural
stiffness properties and deflections for perturbed designs. Therefore, the coupling entries
in the right hand matrix term in Eq. (4-42) may be safely neglected resulting in
substantial reduction in computational resources with no noticeable loss in robustness.

55



TABLE 4-1

Specification of the Global Degrees of Freedom For Element, ie.

Global Deformation Degree of Freedom

Left-hand node of element, ie: A% S8ie-7
Rz Sgie-6
w Sgic-5
Ry Sgie4
Rx S8ie-3
U S8ie-2

Mid-node of element, ie: q10 Sgie-1
q13 Sgie

Right-hand node of element, ie: v Sgie+1
Rz Sgie+2
w Sgie+3
Ry Sgie+d
Rx Sgie+S
U SBie+6
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5. IMPLEMENTATION OF DESIGN OPTIMIZATION
5.1 Outline of the Optimization Solution Method

The fundamental procedural elements involved in optimizing the rotor design in
EHPIC/HERO are outlined in Fig. 5-1. The initialization routine specifies the objective
function, the design variables and the optimization method to be employed. The
subsequent optimization process is iterative and involves sequential evaluation of local
objective function and constraint derivatives, pre-processing this information into suitable
input to the optimization algorithm, implementing the improved design, and re-
converging the wake analysis in EHPIC/HERO. The basic routines that carry out these
procedures are also indicated in Fig. 5-1. This section describes each of these operations
and their computational implementations.

5.1.1 Optimization algorithms

It is appropriate to begin with a description of the optimization algorithm since the
input required to specify the minimization problem dictates the information that must be
supplied by other routines. Thus, the set of computer code modifications and additions
that have been effected in EHPIC/HERO to carry out the optimization process depend
fundamentally on the core optimization algorithms employed. Conversely however, for
problems of this scale, the computational cost involved in providing this information will
limit our choice of practical optimization methods. Therefore, the selection of a suitable
optimization scheme is itself an attempt to optimize the fundamental trade-off between the
rate of convergence to an optimal design over a series of iteration steps and the amount of
computation required per iteration.

In general, the constrained optimization problem may be posed:
Minimize J(X) subject to the constraints

(X) <0 , j=1,....,m
gk(X) =0 , k=mj+1,...,m¢
j<xijsu i=1,...,n
(5-1)

where X is the state vector of order n, J is the objective function to be minimized by
appropriate choice of X, the g; and gy are the m; inequality and m, equality constraints,
and }; and u; define lower and upper bounds for the corresponding design variable, x;. In
the contcxt of rotor design optimization in hover, the complete state variable vector,

X={%:%5d )T where x; and y are the wake collocation point locations and blade
quadrilateral bound circulations used in the EHPIC/HERO analysis, §, are the structural
deflections, and the vector, d, constitutes the set of design variables such as blade twist,
sweep, and anhedral.

In practice, for the performance objective functions considered here, structural
deformations, §, are eliminated prior to posing the optimization task. Instead, effects due
to structural deformation are implicitly accounted for when evaluating the derivatives for
the design vector, d. Candidate objective functions, J(X), include the power arising from
induced drag or profile drag, thrust, the Figure of Merit, or a combination of these.
Examples of imposed constraints include such requirements as maintaining constant
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~ Figure 5.1. Flow chart of overall optimization process and the main
subroutines involved.
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thrust or remaining below a specified total power ceiling. Note that the equations used in

the wake calculation are used to form equality constraints, g, relating the x., ¥ and d
[see Eq. (5-26)). As described below, these equality constraints can be either used

directly as input into the optimization routine or else employed to eliminate the x;,y. The
latter is more efficient, but one forfeits the ability to impose constraints on the

perturbations in X and ¥

In general, the functions, J and g;j are nonlincar. Furthermore, analytical expressions
for these functions in terms of X are usually unavailable and their evaluation is carried
out in a post-processing phase after the hover solution has converged. Thus, although
J(X) and g(X) can be obtained given X the derivatives of these functions are typically
available only by numerical differencing. We observe that the influence coefficients
employed in the wake analysis are basically finite difference approximations to the first
derivatives of collocation cross-flow velocities, g, and downwash velocities, w, wW.Ir.t. X,

and y. The approximation of the first derivatives of these quantities w.r.t. to the design
parameters, d, exacts a computational cost comparable to that of obtaining the other
influence coefficients and is judged acceptable. Thus, an optimization technique that uses
first order information is highly desirable since much of the necessary data is already
available from the wake analysis, and the remaining information can be determined with
the same order of computational cost as incurred in one wake analysis iteration. Zeroth
order techniques using only the evaluated J(X) and gi(X) are wasteful of the first order
available information and require excessive iterations to converge. Second order methods
are judged prohibitive as a result of excessive computational cost involved in evaluating

2 2.
the second order derivatives, a—;—l and -a—% .
Klxxt Xy

5.1.2 Review of the Phase I optimization scheme

The first version of the wake analysis with optimization capability employed a
sequential linear programming (SLP) technique as the core optimization technique
(References 51, 52). As described in Reference 4, the nonlinear, J(X) and g(X) are
linearized about the current design and wake solution,

IX)=JX") + VIX") AX (5-2)
where the constraint
0 = g X) ~g(X") + Vg (X" AX (5-3)

is imposed. In Reference 4, J(X) was equated with the total power required by the blade,
and the set of equality constraints, gj(X), is composed of a thrust constraint to maintain
constant thrust. The set of equations used in the wake solution and extended to account
for design variable perturbations. The twist gradient over each blade segment constituted
the design vector. The state vector, X*, denotes the current design and converged wake
description, and AX perturbations about that solution. Specifically, the posed problem
was to minimize the power expressed as,
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. Ax
P=PX") + {PX,PY}{ A;} + {Pa}{ad} (54)

subject to constant thrust,

. Ax
0=T-Typ=TX )-Tp + {T,,T,}{ A‘;} + {TaHaAd} (5-5)
the wake constraints, -
0 Qqx  Qqy |[Ax
{ }={3} 2o qu el ] e ]{Ag} (5-6)
0] |w) |Quwx Quwy|lAY Qwd
and move limits, ]; < Ax; < u; , where,
o°P _oP | _dP
Px=3§ ; Py-g ; Pd-ﬁ (5-7a)
dT oT dT
Ty = ; Ty=—; Ta= (5-7b)
| Oxc oy od :
_ |2l . - |9 5.7
2us [ad,-] P Qwe ["dj] e
and the entries of submatrices Qqx, » Qwx, and, Qwy are identically the influence
coefficients employed in the EHPI O analysis. Thus the additional computational

load involved computation of derivatives w.r.t. to the design and the thrust and power
derivatives. The wake constraints ensure that, to a linear approximation, the cross-flow
and downwash velocities remain zero under the design perturbations. Egs. (5-1) were
solved using a simplex linear programming routine (Reference 52). The state is then

updated using the computed AX and the EHPIC/HERO analysis reconverged. The
process continues sequentially until no substantial improvement in J(X) is obtained. '

The original SLP algorithm made efficient use of the first order information at hand
and proved sufficient in improving the blade twist distribution for power reduction at
constant thrust. Nonetheless, certain improvements to the algorithm were desirable.
Chief among these were: a more efficient implementation of the upper and lower limit
constraints which originally were entered as 2n inequality constraints (n being the order
of the state vector, X); a means of converging to minima that lic off the imposed
constraints; improved numerical conditioning of the simplex tableau; and ways of
reducing the tableau array size. Hence, an integral task of this effort has been evaluating
altcmatlht:,n?ptimization algorithms and addressing ways to improve the efficiency of the
algori

5.1.3 Selection of optimization algorithms for Phase II
As explained above, our examination of optimization algorithms has been limited to

those requiring at most first order information. The available techniques may be broadly
categorized into constrained and unconstrained minimization methods. The former
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approach deals with. the imposed constraints directly, whereas the latter augments the
objective function with a penalty function which basically penalizes violation of the
imposed constraints. More stringent constraints can be emphasized by varying the
weighting parameters in the penalty function. The transformed problem is then solved
using an unconstrained optimization method. Unfortunately, the unconstrained
techniques tend to suffer from numerical ill-conditioning related to the penalty function
weightings. Furthermore, it is difficult to judge a priori which of the constraints are of
greater importance in the problem and how to quantify the weighting terms to
appropriately enforce a given constraint. Finally, computational experience in structural
optimization problems indicates that such schemes frequently converge much more
slowly when compared to the direct methods (References 51, 53).

Therefore, we focused on the constrained optimization methods. The candidates
considered were an extension of SLP with move limit reduction near the optimum, the
method of feasible directions, and sequential quadratic programming (SQP) (Reference
51). It was decided to implement SQP for the following reasons:

(1) It tends to exhibit superior convergence properties. This is due to the iterative
generation of a Hessian matrix, which is essentially a positive definite approximation to

&2J

X2, o

derivatives. Qualitatively, it embodies information from previous steps to estimate the
curvature, or second order properties, in the vicinity of the optimum. It is this 'memory’
of previous iterations which gives SQP methods an advantage over other techniques
(SLP, method of feasible directions) using only the local first order data and which
originally engendered a closer look at SQP methods.

. As detailed below, the matrix can be generated using only first order

(2) The presence of a positive definite quadratic term in the objective function enhances
convergence near minima that do not lie on the constraint boundaries. It is well known
that the solution to a linear programming problem lies at the intersection of exactly n non-
degenerate constraints. Thus, if the true nonlincar minimum does not lic at such an
intersection the linear programming solutions will dither between the imposed move
limits, ]; and u;. In practice, the move limits are reduced when proximity to the minimum
is detected so that one effectively 'shrinks' the feasible domain down to the optimum
design. This procedure is time consuming and is circumvented in SQP methods by virtue
of using a quadratic objective function.

(3) The SQP problem is solved by using a modified version of the simplex algorithm. As
described below, solving a quadratic programming problem amounts to finding a feasible
solution to the Kuhn-Tucker conditions which can be cast as a linear programming
problem with additional logical constraints in the selection of variables leaving and
entering the active set (i.c. the set of variables that away from its bounds, 1; and u;.) Thus,
the core simplex routines employed by SLP and SQP methods share a strong commonalty
and in fact, the same simplex algorithm is used by both methods in the optimization code
developed here.

One drawback of the SQP approach is increased array dimension of the simplex
tableau. Whereas the tableau for the modified SLP scheme developed here is of order (m
by n) where m is the number of imposed constraints, the SQP solution process requires an
array of order (m+n by m+2n). Since the number of wake related equality constraints is
n, then m=n and the SQP method has six times the memory requirements of the SLP
method used to solve the same problem. The number of floating point operations
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increases accordingly. Furthermore, away from the optimum, the SLP and SQP
algorithms tend to advance at the same rate. This is due to the fact that away from the
optimum the design change per optimization step is limited primarily by the imposed
move limits. The linear approximation to the objective function dominates the quadratic
terms and the design changes obtained per iteration tend to be identical using either SLP
or SQP. The picture is different in the neighborhood of the minimum where many of the
first order derivatives tend to zero, so that the quadratic term in the SQP formulation
becomes important and accelerates convergence to the final design. Accordingly, it has
been found to be desirable to retain both the SLP and SQP techniques, using SLP initially
and then continuing with SQP when proximity to the optimum is ascertained. The
similarity of the underlying simplex procedure used in both SLP and SQP solution
procedures has thus proven to be a distinct advantage.

In the following sections, the linear programming (LP) and quadratic programming
(QP) problems are posed, and the solution to the QP problem stated and its relation to the
LP problem established. The construction of quadratic term in the SQP approach is then
described and finally some aspects of the common simplex routine detailed.

5.2 Statement of the SLP and SQP Problems
The nonlinear optimization problem posed in Egs. (5-1) is repeated:

Minimize J(X) subject to the constraints

§X <0,  j=l..m
g&X)=0 , k=mj+1,...,m,
j<x;<y . i=1,....n

(5-8)

The solution at iteration step, q, is known, X4, and the problem is to determine a change
in this solution which results in a reduction in J(X). In the iteration limit, convergence to
a Jocal minimum is expected. The LP problem to be solved each iteration step is:

Minimize, J(X9) + VI(X9) AX subjectto

gjX?) + Vg;(X1) AX<0 , j=l,...m
gx(XY) + Vg XN AX=0 , k=mj+l,...m,
Al; < Ax; £ Ay; , i=1,...n
(5-9)
The upper and lower bounds incorporate move limit requirements:
Alj=Max. {- A, ] - x1 } (5-10a)
Aui=Min. { A" , uj - x1 ) ‘ (5-10b)

where Ax;nax is the maximum change in x; allowed per iteration step. The QP problem is

identical to the LP problem except that the objective function is augmented by a quadratic
term to:
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JX9) + VIX9) AX + -AXT[B] AX (5-11)

where matrix, [B], is a positive definite approximation to the Hessian of the objective
function and local constraints and is generated iteratively from successive evaluations of
the first order derivatives as described in Section 5.2.2.

“The LP problem at each iteration of the SLP method is solved using the simplex
technique described in Appendix A. In the SQP case, the sequence of QP problems is
solved finding feasible solutions to the Kuhn-Tucker equations as described below.

5.2.1 Kuhn-Tucker conditions
The solution to the QP problem is stated in terms of the well-known Kuhn-Tucker

conditions (Reference 51) as follows. The full nonlinear conditions for an extremum are
thereby stated by first defining a Lagrangian,

n n mi+me
L=JX) + il - X;) + T X -w) + Y A gi(X)
. . &
i i i (5-12)
then in addition the imposed constraints,
Y/
VLX Y=—F= 5-13
'L ) X 0 (5-13a)
i (X;-li) =0; uy (ui—XI) =0; pyi. M 20 (5-13b)
2igi(x")=0; 220 G=l,...m) (5-13¢)
Ay unbounded (k=mj+l,...,mj+m) (5-13d)

where the superscript, (+)*, denotes evaluation at the optimum point. The new

parameters, 1, M2 and, A are Lagrange multipliers that correspond to the lower and upper
bound constraints and the imposed constraint equations respectively. The first of these
equations define an extremum while the remaining conditions restrict the allowable
values for the Lagrange multipliers. Specifically, for inequality constraints, the
associated Lagrange multiplier can only be non-zero if the constraint is active. This
implicitly states that when a given inequality constraint is active then the gradients of the
cost function and constraint point in opposite directions so that the design cannot be
further improved without violating the local constraints.

- For the SQP problem posed in terms of design perturbations, in addition to satisfying
the imposed constraints, the optimum AX satisfies:
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mi+me
VIX9) + [BJAX - p + p, + 3, A;Vgi(X9) = 0(514a)
i=1

with

pii (Axi —AL) = 0 ; py; (Auj—Ax;) = 0 5wy, pgi 2 0 (i=1,...,n)
(5-14b)

A;[8;(x) + Vei(x9)aX] = 0 5 4520 G=l...m)  (5-140)

Ax unbounded (k=mj+l,...,me) (5-144)

In the above, the first n equations are merely linear equality constraints which are directly
accommodated in the simplex formulation. Likewise, the positivity requirements upon
the components of {1, Y2 and, A;j are naturally dealt with in the LP framework. The
imposed linearized constraints, gj, are of course already handled by the simplex
algorithm. Therefore, the only modifications required to solve the QP problem utilizing
the simplex algorithm are those related to the nonlinear constraints in Egs. (5-14b,c).

Fortunately, these conditions can be implemented entirely by logical restrictions upon the
variables allowed to enter and leave the basic set during a pivot operation. Specifically,
in the simplex formulation the inequality constraints, are converted to equality constraints
by the use of slack variables, s;:

gj(X9) + Vgj(x9)AX < 0 (5-152)
gj(X9) + Vgi(X9)AX - 5;=0, 5520 (5-15b)

Thus the related Lagrange variable, A;, can only enter the basic set if s; is at its bound,
sj=0, implying that the corresponding constraint is active. Equivalently, only one of s;

and A; can be in the basic set at a given time. Since membership of a given variable in the
basic set is a logical attribute, the nonlinear constraints embodied in the Kuhn-Tucker
conditions are implemented simply by conducting a series of membership tests upon the
candidate pivot elements.

The problem solved by the QP algorithm is an approximation to the original nonlinear
optimization task posed in Egs. (5-8). Thus in the spirit of iterative methods for solving

nonlinear problems by local linearization, the solution, AX, obtained is used to update the
current design, the functional and constraints and their first order derivatives re-evaluated
about the new state, and 2 new QP problem formulated about that point. Although it is
difficult to derive conditions for convergence in the general case, the sequential process is
expected to converge to the nonlinear optimum, especially if the functional is convex in
the vicinity of the optimum.

An extension to the SQP procedure described is to employ the state vector update,

AX, as a search direction and perform a 1-D minimization or equivalently determining an
optimal step length along this direction. The theoretical advantages of conducting a 1-D
search along the optimal direction include more accurate update of the Hessian matrix
approximation. Also, theoretical proofs of superlinear convergence of the SQP scheme
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assume that 1-D optimization is executed. Unfortunately, at least two additional
functional evaluations (calls to EHPIC/HERO), are necessary to determine an
approximate 1-D minimum using a quadratic polynomial fit. This cost was found to be
unnecessarily expensive since the rate of convergence to an optimum was not
significantly improved. We believe this to be due to violation of constraints that can
occur when the optimal step length differs from unity. It was also observed that the 1-D
functional which is constructed from the cost function and active constraints is sensitive
to round-off error and constraint violation and occasionally leads to unreasonable step
lengths which must be limited. Furthermore, as noted earlier, when the design change is
limited primarily by the imposed move-limits, the progression of the solution toward the
optimum is fairly constant whether employing SLP, SQP or SQP with 1-D minimization.
Hence, the SQP algorithm employed here is executed using unity step length.

5.2.2 Hessian matrix update formula

The Hessian matrix approximation, B, is updated at each optimization step, q,
according to the Broydon-Fletcher-Shanno-Goldfarb update formula (References 51, 54,

55). Given the current approximation, B4, the updating proceeds as follows: First rescale
B4 as,

Te 4
B"=xBl , k=D | (5-16)
p Bp
then update,
B'pp'B 1l
pi*l= p*-ZFP = 5-17a
B o o
where, p = X9-X91 = AXal (5-17b)
r=Owl+(1-6)B'p (5-17¢)
wl = VxL(X9,4%7) - VxL(x91,297) (5-17d)
L=JX + Y 4gX (5-17¢)
iEIh
1 if pTr20.2pTB‘p
and 8= (5-176)
08p"Bp .. T Tp*
if plr<0.2p'B
PTBp-pr T pEP

Here, I, is the set of holonomic constraints as explained in the next sub-section. The

matrix, BY, is first scaled by the factor x as recommended by Luenberger (Reference 56).
For a quadratic programming problem where the true Hessian of the Lagrangian function

at the optimum is H, then defining x in this manner guarantees that the range of
eigenvalues of BH'! spans unity at each iteration. Furthermore, the condition number of
BH!) will be non-decreasing which is desirable from a numerical standpoint. In theory,
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the specification of q above ensures that if B is initially positive definite then it remains
so after the updating procedure. However, this is not necessarily true in the presence of
round-off error. Specifically, the last term in Eq. (5-17a) is always positive semi-
definite. However, numerical differencing between the first two terms can introduce
sufficient error to render Ba+! non-positive definite. Hence, the expression is modified
slightly by adding small positive terms to the diagonal elements of B:

;g%[diag {2} . y=8% (5-18)

The entries of this additive diagonal matrix are identical to the diagonal components of
the second term on the R.H.S. of Eq. (5-17a) scaled by a factor of 0.01. The manner in
which information of the cost function and constraint derivatives from preceding
optimization steps is implicitly incorporated into B4 is apparent from the definition of wd.
During the course of the optimization, round-off error and higher order contributions
from the constraints and cost function derivatives are also accumulated in B. Thus,
periodic resetting of the B to a scaled identity matrix is recommended and is done in the
code every 2n-2 optimization steps (resetting B every n steps can occasionally slow
convergence) and also when convergence to the optimum is detected.

BI*! Bt 4

The preceding construct for the matrix B guarantees that the generated matrices B4
remain positive definite throughout the optimization provided that the initial matrix,

B0>0. This is true regardless of whether the true nonlinear cost function, J, contains
maxima or saddle points. Under certain assumptions on the convexity of the objective
function and constraints (References 54, 55) it is proven that superlinear convergence
results when using this update forrula. The sequence, B4, need not converge to the
actual Hessian of the Lagrangian at the solution. Instead, the projection of B4 unto the
tangent vector space generated by the linearized acting constraints converges to the
corresponding projection of the true Hessian. Or symbolically, if the optimum solution is

denoted by ( X u'A") then

lim zT[vxxL(z‘,;_z", A%)- Bq]Z =0 (5-19)
qe

where, the Lagrangian is defined in Eq. (5-12), and Z is any vector lying in the space
generated by the active constraints:

VgX) . jeja and Vg , kel,...me (5-20)

where the set of active inequality constraints, ja={j: g=0 , j=1....,mj}.

5.2.3 Distinction between holonomic and non-holonomic constraints

The set of constraints, I, appearing in the summation of the constraints in Eq. (5-
17¢), is the subset of the complete set of constraints that are holonomic. The update
formula for B9 assumes constraints of the form Eq. (5-8) which are functions of state, X,
and possibly other parameters which are fixed during the optimization process. These
constraints may be thought of as global constraints in that they form well defined and
fixed hypersurfaces in the state space. Constraints may also be stated in differential form
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which in the present context implies that the constraints are expressed in the form, dgj(X,

AX)<0 or dgy(X, AX)=0 which may be regarded as local constraints imposed at a given
optimization step but which may change between steps. When such constraints are
integrable so that they can be expressed in the form g;(X)<0 and gxX)=0 respectively
then they are termed holonomic. When no such integrated form exists, they are classified
as non-holonomic.

Examples of holonomic constraints applied to the hover optimization task include the

" specified upper and lower bounds on X, limits on the nodal twist, or equality and
inequality constraints on power and/or thrust. Examples of non-holonomic constraints
include move-limit constraints, changes in nodal twist, and, most significantly here, the
equality constraints derived from the wake analysis. The wake equations are expressed in

terms of the changes in collocation point positions, Axc and bound circulations, Ay.
These perturbations are determined in the optimization analysis and used to update x; and

Y. However, during the subsequent EHPIC/HERO analysis where the wake is re-

converged, X and ywill generally change. i.c., the values of x: and ydiffer between calls
to the optimization process with the discrepancy being due to nonlinearities. Therefore,
these constraints are not included in the update formulas. Similarly, the move limit
related inequality constraints are not used for the Hessian matrix update. However, when
the solution is sufficiently close to a 'hard’' bound (upper or lower limit imposed on the
variable) so that it forms one of the boundaries of the feasible region then the associated
inequality constraint now is used in the update equation for B4. Naturally, all of the
constraints must be retained in the SQP optimization in order to define the feasible
region.

5.2.4 Extensions to SLP

The SLP algorithm utilizes the same simplex subroutines as the SQP scheme.
Beyond the modifications made to the simplex algorithm itself, the chief modification
that has been made from the Phase I algorithm is additional logic for the sizing of the

move limit, Ax{"?*, associated with each x;. The rationale is to retain constant size move
limits as long as the design point is heading towards the optimum. If the optimum
solution is fully constrained (i.e. lies at the intersection of a total of n linearly
independent constraints) all is well since the LP solution will then coincide with the
actual nonlinear solution. In general however, the optimum solution may not be fully
constrained and when one is sufficiently near the optimum such that the optimal design
point lies within the feasible region, the sequence of points obtained via SLP from there
on oscillates about the optimum essentially bouncing between the move limits defined for
the design variables. Thus one has obtained the optimum solution only to within the

resolution defined by the Ax]"®*and to increase the accuracy of this solution the

Ax™ must then be reduced. This is easily done if one is able to ascertain when the

optimum lies within the feasible region surrounding the current design point. This is
accomplished by keeping track of the design changes. Specifically, the two most recent
design points are stored and if all of the design variables are observed to remain within

the region defined by X + A XM2X then the move limits arc reduced. i.c., if
ng —x:l'z|<Ax{"ax , Vi, then set Ax{™* « 0.55 Ax"**.
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5.3 Application to Rotor Desi gn Optimization

The implementation of the sequential optimization techniques outlined above,
amounts to specifying a design vector, d, together with the desired cost function, J,
constraints, gj, and their derivatives as input to the optimization algorithm. The design
vector, d, is determined by the user in the optimization input file and consist of the
parameters that specify the undeformed blade geometry. These presently include sweep
distribution, twist distribution, anhedral distribution, chord distribution, and collective.
The coding for blade radius and cutout optimization is also in place but their use as
design parameters is not recommended at present. The equations used in the
EHPIC/HERO wake analysis form a set of equality constraints in the optimization
analysis. In many cases, the equality constraints associated with the wake equations can
be solved directly to eliminate some of the variables thereby greatly reducing the
dimensions of the optimization tableau. These topics together with the objective
functions and constraints that may be applied are examined in the following sections.

5.3.1 Description of available objective functions

The user is offered a selection of objective functions to be minimized. In the present
version these are restricted to thrust, induced power, profile power, or combinations of
these. Objective functions associated with structural properties can also be formulated to
minimize maximum stresses or deflections. However, structural optimization has not
been included as an option for several reasons. First, the focus of this effort has been
upon the aerodynamic aspects of the hover problem and the purpose of including a
structural modeling capability is to improve hover prediction for real rotors. To that end,
a structural model that predicts the blade deflections with an accuracy that is consistent
with the amount of detail contained in the geometry specifications, is adequate. Hence,
for example, the number of finite elements is commensurate with the number of blade
segments. This also allows a concise structural specification file where the major blade
stiffness and mass properties are characterized in terms of area integrals. Finally, the
model can be constructed very efficiently which is advantageous when determining the
design related derivatives in the optimization analysis since the stiffness matrix and nodal
forces must be recomputed for each design perturbation in order to account for
deformation effects (see Chapter 4). Second, it is judged that a serious approach to the
task of structural optimization requires a more detailed structural model in order to obtain
accurate estimates of the blade stresses. This requires specification of skin thickness, and
other localized geometry information rather than the integrated cross-section parameters
used in EHPIC/HERO. Finally, the structural optimization task is constrained by other
considerations not directly relevant to the hover problem. Notably, the modal
frequencies and blade dynamic response in forward flight are expected to be more
significant in guiding structural optimization.

Therefore, we have sought to furnish a series of objective functions which represent
integrated acrodynamic performance parameters deemed to be of most interest to
potential users. At present the fundamental parameters are the thrust, T, induced power,
P;, and profile power, Pp. The user selects the objective function by specifying the input
parameter KOBJ(1) as follows (see Reference 12):

1,11 Minimize Total Power, Pt = Pp+ P;
2,12 Maximize Thrust, T
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3 Maximize Figure of Merit, V2 C132 /2Cq.

4 Maximize Propulsive Efficiency, C1/Cq.

20 Multi-objective minimization of both thrust and total
power

30 Multi-objective optimization of combination of thrust

and induced and profile power contributions.

where CT=T/(prQ2R*) and Co=(Pi+Pp)/(pnQ2R5). The cost function combinations for
KOBIJ(1)220 are specified below. It suffices here to note that these involve combinations
of T, P;, and Py. Then it follows that all options for KOBJ(1) are constructed from one or
more of the functions, T, Pj, and Pp, which must be supplied in the EHPIC/HERO
analysis along with the first order derivatives which are calculated by finite differencing.

Except for options KOBJ(1)=3,4, the objective functions appear to exhibit weak
curvature so that the design tends to progress indefinitely along a path of steepest descent.
This is similar to the problem encountered in linear programming procedures where the
objective function is linear and unless suitably constrained, can return optimal designs
with infinite values. It is clear, for example in a power optimization calculation, that
unless a lower bound upon thrust is imposed, the design will move in a direction that
reduced thrust along with the power leading to zero or negative thrust levels. To properly
pose the optimizations, each option of KOBJ(1) also implicitly adds constraints:

KOBJ(1) Applied Constraint(s)
1 T=T
2 PT=($’.}C
3.4 None dpec
11 T2T.
12 Pr<(Popec -
20 T> Tpec and Pr < (Prkspec

where (*)spec is a specified level (default levels correspond to the initial design).

5.3.2 Choice of multi-objective functions

A multi-objective design task is generally approached by constructing a global
objective function from the single objective criteria. The simplest form is simply a linear
combination of the constituent cost functions and utilize this as the cost function, J, in the
same optimization procedure employed in the single objective case. A preferable
approach is to combine the single objective functions in a possibly nonlinear fashion so
that the resulting global cost function represents a physically meaningful entity.
Examples of this are the options KOBJ(1)=3, 4 where the thrust and power are combined
nonlinearly to form the figure of merit and propulsive efficiency. Often, however, such
convenient combinations are not obvious, particularly in multi-disciplinary optimization.
Therefore, unless or until global optimization cost parameters are available, the lincar
combination of single objective functions is arguably most useful due to ease of
implementation and tractability, and since sensitivity analyses which help gauge relative
trade-offs between the various constituent cost can be straightforwardly conducted for
this combination.
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If the single objective cost functions are denoted by Ji then the composite cost
function,

Ig = 2, wi]; (5-21)

where the w; are weighting parameters that are intended to reflect the degree of
importance attached to minimizing the constituent, J;. The specific forms for the multi-
objective options of KOBJ(1) are:

_ Pr-(Pr)..
KOBJ(1)=20: Jg=wy —max_T L o T (P1)nig (5-22)
Trmax = Trmin (PT)max - (PT)min
- P;-(P;) .
KOBIJ(1)=30: JG =w] _TM._T_ + Wy 1 ( l)I'l'lll'l

P p- (P p)min (5-23)
P P)max - (Pp)min

where T= thrust, Pt=total power, Pi=induced power and Pp=profile power. The (-)mm
and (*)max values are cither specified by the user or set to default values in
EHPIC/HERO. Their purpose is to scale the dimensional quantities so that the J; have
roughly equal influence upon the overall Jg. Ideally, if the w; were all equal, then the J;
would also be equal in the globally optimal design. In practice best guesses to these
ranges are usually made. One alternative (Reference 57) is to perform the single
objective function minimizations separately. For each design thus obtained, dx say,
EHPIC/HERO may be used to evaluate T(dx), Pi(dx), and Pp(dx). Then

Tmax = m]?x{T dy )}, and similarly for Tmin, (Pmax etc.

+ wj
(

An important consideration is the selection of the wj. This is a non-trivial task with
the goal of choosing values for w; that leads to an overall qualitatively 'best' design. It
often happens that one of the J; dominates and the optimal design is similar to the
corresponding single objective case. A more serious effect is that usually some of the J;
are 'sacrificed’ in order to allow decrease in some other J; so that a net decrease in Jg is
attained. Problems arise if the change in the numerical magnitude of J; is small in
comparison to the other Jj, but that this change represents an unacceptable increase of that
cost. Essentially, this reiterates the desirability of a global cost function which is derived
from physical considerations (e.g. figure of merit; propulsive efficiency) since it is
otherwise not clear what JG is intended to represent. Hence it is assumed that this issue
has been carefully considered by the user who is required to specify the w; in the input
file.

One addluonal safeguard is supplied however which prevents the individual costs
from exceeding specified upper bounds. Thus the following inequality constraints are
enforced for,

KOBJ(1)=20:
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J -—._Imﬂ.—_T_. < 1 Ja = PT-(PT)min <1 (5_24)
S oo ~Pr)m
KOBJ(1)=30: |
- P.-(P;) .
. S A L S
Tma-x—Tfmn ( l)max ( l)mm
P,-{Pp) .
) ( ")ml" <1 (5-25)

In fuzzy optimization terminology, the J; may now be regarded as membership functions.
The combination of the normalization terms and the limiting effected in the preceding
equations implies that the J; €[0,1]. It is assumed here that by suitable choice of (*)max
and (*)min the individual J;20. Thus the individual cost functions are placed on an equal
footing with the other imposed constraints. This guards against the 'sacrifice’ behavior
mentioned above and tends to produce qualitatively better designs that give overall
improvement in at least some of the J; while ensuring that the others do not become

unacceptably large.

5.3.3 Incorporation of the wake constraints

The equality constraints upon linearized normal/binormal velocities and the blade
quadrilateral downwash velocities are directly available from the EHPIC/HERO analysis
and are expressed as,

Ax
Aq) _ 0 _ qu qu qu =
{Az} '{Q}"[Qm Quwy Qud ‘:-g (5-26)

These constraints play two roles in the optimization analysis. First, when enforced, they
guarantee that to within a linear approximation, the post-optimization design maintains
zero downwash and collocation cross-velocities as required for the converged wake
solution. In practice, the inherent nonlinearities require that the wake solution be
reconverged and the post optimization design solution provides a very good first guess to
the converged state. Second, these constraints serve to linearly couple the design
perturbation with the wake changes so that the total influence of a given design variable
upon the constraints and cost is accounted for. In EHPIC/HERO, the design related
influence coefficients are effectively partial derivatives with the collocation points and
blade circulations held fixed. Thus, for example, the thrust coefficient, Ty, for design
variable, dj, is computed by perturbing the blade geometry corresponding to dj and then
forming the finite difference of the thrust. Thus,

Tg= g—gl (xc, Y fixed) - O (5-27)
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To determine the physical change in thrust that occurs when d is perturbed, the total
derivative must be evaluated implying that the changes in the wake, Ax., and bound

circulations, Ay, must be taken into account. Thus,

aT_ 9T\ + 9T py 9T g (5-282)
dd = oxc oy - od

Or,
gg = T, Axc + TyAy+Ta Ad (5-28b)

The wake constraints can now be used to solve for the wake position and bound
circulation perturbations that take place for perturbation Ad:

Ax] _ [Qux Qqr I[qu]
= -2
{AZ} ‘I:wa QWYI Qwd Ad 29

so that the physical thrust change due to Ad is,

1
wft o Wb om

This is extremely important since in general the second term in () of the preceding
expression dominates implying that the chief contributions are due to the related wake
and bound circulation changes. In fact, it is the matrix partition, Qwg, which accounts for
most of the contribution to AT. This has been observed to be generally true of
aerodynamic parameters other than thrust (e.g., power).

The set of linear equality constraints, Eq. (5-26), can ecither be entered into the
optimization analysis directly in forming the constraint set, g, or else used to eliminate
the variables Ax; and Ay via Eq. (5-29) in a pre-processing step prior to the optimization
routine. The advantage of the latter approach is a drastic reduction in the dimension of

the simplex tableau since when Eq. (5-26) is entered directly in the optimization routine,
it consumes most of the tableau. The drawback is that move limits can no longer be

imposed upon Ax. and Ay and so the move limits imposed upon the design variables may

need to be reduced to ensure that the subsequent wake analysis reconverges. Reduced
move limits imply slower progress toward the final design.

The EHPIC/HERO optimization parameter, KOPT, allows the use to select between
these options:

KOPT=1 - Use the full wake equations to define equality constraints in the
optimization routine; .

KOPT=2 - Use the full wake equations to eliminate Ax. and Ay and update the
design variable related influence coefficients (e.g., Tg, etc.)

KOPT=3 - Same as KOPT=1 except that only the downwash equations are
retained and Qwx is assumed zero. Thus the constraints

corresponding to the wake analysis reduce to:
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: A
0= [Qw‘y QWd]{Ag}

KOPT=4 - Usethe reduced equati@ns of KOPT=3 to solve for Ay. Then,
Axe =0 o
and Ay =-[Quy] " [Qual Ad

The particular option to use will depend on the specific blade configuration and wake
analysis used. Increasing KOPT results in fewer computations but tends to be less robust,
particularly for analysis involving a large number of wake points.

5.3.4 Incorporation of structural deformations

The constraints equations, Egs. (5-26), and the objective function definitions assume

that those influence coefficients identified with the design perturbations, Ad, take into
account any structural deformation effects. When structural deformation is present, one
distinguishes between the undeformed geometry which is defined by the design variables,
and the deformed geometry used in the wake analysis. This is most important when
determining the various derivatives with respect to the design variables (e.g., Qwd, Td.
etc.) by the finite differencing technique. If we denote here by do any variable used to
specify the undeformed geometry and by ds, its value in the deformed case, then is it not
generally true that perturbing do leads to an identical perturbation in ds. i.e., in general,

Adp#Ads due to change and reorientation of the deformation vector. Furthermore, a
perturbation in a single component of do alters the deformed geometry of the complete
blade. Take, for example, the undeformed sweep of a given segment iseg,
UNDSWP(iseg). Perturbing UNDSWP will reorient the force due to blade rotation, alter
the stiffness matrix which has major contributions from rotational stiffening, and
consequently change the deformation state and the deformed geometry for the whole
blade. Note also, that even if the actual acrodynamic loading were to remain constant the
reorientation of the blade results in a different nodal force vector and hence deformation

state. The difference, Adg-Ads, naturally depends upon the material blade stiffness.
However, this difference can lead to significant changes in some of the derivatives w.r.t.
to design, (+)¢. This is especially true of the twist gradient, where the tip twist change can
be twice that due to the rigid body perturbation alone for typical blades, thus causing
readjustments in these (*)q on the same order as (*)q itself. This corresponds to the

classical theory of torsional divergence in aeroelasticity.

In principle, the state vector can be expanded to include changes in the deformation
state, so that the equality constraints are augmented to: ‘

Ax
Qqx Qqy Qs Qqa

>
0o

0
Aw: = g = wa Qw‘y Qws de A; (5-31)
Af 0 Qx Qy K Qu]|,q4

Here, the residual Af = £ - Ks, and the new influence matrix parﬁtiohs, Qqgs: Quws: Qux»
Q¢y> and Qgq represent the change in the quantity corresponding to the first subscript due
to perturbations in the state associated with the second. This approach was originally
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implemented during this effort. However, as mentioned in Section 4.6, the calculation of
the new influence matrix partitions is rather lengthy and cumbersome and was eventually
dropped in favor of the approach below.

Rather than conduct a linearized analysis involving the structural deformation
changes, it proves far more efficient to perturb the undeformed design component,
recompute the structural properties and loading, update the deformed geometry, and then
calculate the various acrodynamic derivatives (Qgqd, T4, ¢tc.) based upon this geometry.
The computation required to conduct the complete structural analysis and update the
deformed geometry is a small fraction of that entailed in computing the wake related
influence coefficients. Thus, in essence we define:

. =2 )
()_g—(ag ]w (5-32)

so that xc and y are held constant, but § is allowed to vary. Fortunately, this is a situation
where the actual nonlinear analysis proves more efficient than the linear approximation
without loss of robustness in the computation.

In order to calculate the new deformation, the acrodynamic loading must be known,
but this is not available until the deformed geometry is available. In theory, a time
consuming series of sub-iterations is required where the deformation and loading are
updated until convergence is attained. In the present implementation, the deformation is
computed only once for a given design perturbation using the aerodynamic forces of the
unperturbed design. This is justified in light of the fact that most of the change in
structural deformation will be due to reorientation of the segment axes and corresponding
changes in the local to global transformations matrices used in obtaining the stiffness
matrix and nodal forces. Furthermore, this is consistent with the linear approximations
used elsewhere in deriving the first order derivatives.

5.3.5 Twist constraints

The dominant design variable in most optimization computations is the twist gradient,
TWG(iseg), over cach segment, iseg. The total twist at the outboard end of iseg,

iseg
TWR@seg+1)= Y TWG(jseg)* SL(jseg) (5-33)
jseg=1

where SL(jseg) is the segment length. Since TWR is an accumulative function of the
TWG variables lying inboard it is possible that excessive changes in TWR occur,
particularly as one approaches the tip, rendering the linearization assumption invalid, or
destabilizing the subsequent wake analysis. In order to prevent such changes inequality
constraints are adjoined to the optimization analysis limiting the twist change according
to:
iseg
ATWR(iseg +1) = Z ATWG(jseg) * SL(jseg) £0.3° (5-34a)
jsegely
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) iseg
ATWR(seg+1)= Y, ATWG(jseg)*SL(jseg)2—0.3° (5-34b)
jsegelg

where iseg ranges from 1,...,nseg and belongs the set of segments, Iq={iseg:

TWG(iseg)e d;}. i.., if some of the TWG variables are held fixed, such as when only the
outboard segments are allowed to vary in the analysis, then those fixed variables are
skipped in the above summations. :

5.3.6 User supplied constraints

Preliminary coding designed to incorporated user defined constraints has been
developed (but not yet tested). It takes the form of a subroutine which allows the user to
define inequality constraints and equality constraints as functions of the design variables,
d;. The intended goal is to permit the incorporation of constraints derived via external
analyses such as other forward flight studies or structural dynamics considerations. It is
assumed that the functional dependence of these constraints upon the d; can at least be
approximated, say by polynomial curve fitting, so that the constraints and their first
derivatives can be defined based upon the information supplied to the subroutine. In
principle, cost functions could also be user defined and used to augment one of the
KOBIJ(1) options. Instead, the anticipated manner of incorporating alternative cost
functions will be limited to constructing inequality constraints such as those in
Egs. (5-24) and (5-25). This follows from an assumption that accurate evaluation of these
external cost functions is better accomplished using independent models, but that their
inclusion in a EHPIC/HERO optimization might be desirable to prevent designs yielding
unacceptable values for these cost functions._

5.3.7 Summary of optimization formulation

The general optimization problem that may be formulated within EHPIC/HERO is
summarized:

Minimize { Cost = J + J; Ax + ], Ay + Jg Ad |

subject to:

02 g + Qix Ax + Qiy Ay + Qg Ad

Aq 0 Qpx  Qqy Quqa |[8%

Aw =10t =[Qux Quy QuafiBY
Eloe 8] 10 [Qa Qy Qulag
L <x;<vu;, i=l,....n

(5-35)
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The subscripts (+); and (+), refer to inequality constraints and equality constraints (beyond
those associated with the wake) respectively. These include constraints upon the twist,
Eq. (5-34), and any constraints input by the user.

If the user sets KOPT23, then one solves for {Axc Ay }:

Ax) [Qux Qqy ‘[qu] ]
s s 530

using Gaussian elimination. The optimization task is transformed by substituting
{Axc Ay} back into the remaining equations:

Minimize { Cost =J + J4 Ad)
subject to:

02 Q+ Qg Ad

{50

;<Ad;<vy; , i=1,...,NDES

(5-37)
J d‘ J d J X J Y 1
Qia Qiq Qx Qy [qu Qqr [ Qqa ]
here: ot = - 5-38
where Qed Qed Qex Qey |[Qwx Quwy Quwd 5-38)
Tq Tq T, Ty

5.4 Numerical Considerations

For certain options of KOPT, the simplex algorithm and BFSG update procedure can
involve large arrays containing several hundred rows and columns. For problems of this
size, numerical accuracy considerations become an important issue. Some of the steps
taken in this regard are summarized in Section 5.4.1. Another consequence of such large
problems is the increase in the computational time required to both compute the
constraint derivatives and to perform the pivoting operations in the simplex scheme.
Thus, various options that allow some of these computations to be skipped have been
gxplored and are presented in Section 5.4.2. Finally, convergence tests are given in

ection 5.4.3.

5.4.1 Treatment of round-off error

An important consideration in implementing the SLP and SQP algorithms is the
presence of round-off error. This is particularly true of larger problems involving several
hundred constraints (e.g., incorporation of the equality constraints corresponding to the
equations in the EHPIC/HERO code relating the wake point positions, velocities, etc.).
Several steps were taken in order to attenuate or else accommodate the effects of round-
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off error. Prior to the optimization analysis, the simplex tableau is preconditioned by
rescaling all entries so as to be of comparable magnitude. First, for each row the entry
with the maximum absolute value is found and the row divided by that entry. The same
is then repeated for each columns. The latter operation is tantamount to rescaling the
state variables, x;, and is used in determining corresponding scaling factors. Thus,
denoting the simplex tableau entries by ajj, the scaling operations proceed as:

a:: )

ajj "r—ll , Tj= mjax{ ! aj I } , i=1,...,nrow (5-39a)
a.-

aij (—:zl ’ Cj = mlax{ I aij | } ’ j=1,...,ncol (5-39b)

where for linear programming,

nrow =m+]1 ; ncol=n+l (5-40a)
and for quadratic programming,
nrow= m+n+1 ; ncol=2n+m+1 (5-40b)

The factor, 1/c;, is a representative scale for variable, x;, and is utilized elsewhere in the
optimization algorithm when conducting comparison operations and convergence tests.

The use of double precision for the complete tableau has the undesirable consequence
of a four-fold increase in memory requirements. Therefore the use of double precision is
restricted to only certain key variables and parameters used in the accumulative summing
operations. In particular, double precision is employed for the auxiliary cost and reduced
cost coefficients used in finding a feasible solution and, for quadratic programming
problems, in satisfying the Kuhn-Tucker. Finally, consideration of round-off error and
tableau dimension is made when specifying the tolerance and convergence parameters
used in the optimization algorithm.

5.4.2 Efficiency improvement options

The additional computation that must be performed for optimization is categorized
into 1) calculation of the influence coefficients pertaining to the design variables, and 2)
execution of the SLP or SQP routine to determine the improved design. In many cases,
the various influence coefficients change slowly with the design. Furthermore, unless the
design is near-optimal, the design changes at each optimization step are the same, i.e.,

AXANAXI is constant. These fortuitous properties can be put to good use in diminishing
the computational cost. By taking larger steps in design space between optimization
calculations and design related influence coefficient evaluation, the total number of
operations is substantially reduced, with an accompanying trade-off of a possible
lessening in robustness. Rather than effecting the full design change immediately after
AX has been determined, this design change is implemented over a series of fractional
steps. The wake analysis is reconverged during each fractional steps. This improves the
robustness of the overall computation since the linearity assumptions implicit in the
iterative solution in the wake analysis are more likely to be valid over one fractional step
than over the full design change. To this end, the user supplies the input parameters,
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KWIKN and NFRAC, where NFRAC is the number of fractional steps and KWIKN has
the following meanings:

KWIKN=0 -No modification of the optimization procedure. The influence
coefficients and the optimization calculation are executed every
time the wake analysis is re-converged.

KWIKN=1 - The influence coefficients pertaining to the design variables are
updated once every NFRAC steps, but the optimization routine is
executed every time the EHPIC/HERO wake analysis has
reconverged.

KWIKN=2 - After every NFRAC steps, the influence coefficients corresponding
to the design variables are re-cvaluated. The move-limits are
expanded:

max max
AX™*  NFRAC * Ax]

and the optimal design change, AX, computed. The design change
is then implemented over the next NFRAC steps as:
1) k=1
1

2) Xx & Xk1 + NFRAC AX
3) Reconverge wake analysis

4) k=k+1

5) If k < NFRAC go to step 2

The simplex tableau is stored in the form suggested by Kiinzi (Reference 57) which
affords a m by m reduction in tableau size for the LP case and (m+n) by (m+n) reducton
in the QP case. An by n block can be eliminated in the QP situation by recognizing that

the tableau coefficients for the Lagrange multiplier vectors, n1 and p, are identical
except for sign. This is due to the twin observations that: 1) the initial tableau entries

corresponding to |; and py are simply [-In] and [I;] respectively so that the above
relationship holds at the start of the simplex manipulations; and 2) the pivoting operations
basically consist of row manipulations where each entry in a row is operated upon in the
same manner. Thus rows may be multiplied by the same scalar, and scalar multiples of a
row may be added to another. It thus follows that columns that are multiples of each
other retain that property subsequent to the pivot operations and that furthermore, the
constant of proportionality remains unchanged.

5.4.3 Storage requirements

For SQP optimization, storage space on the order of (2n+m) by (n+m) is needed
where n is the total no. of variables under consideration (including in addition to the
vector of design variables, the vector of bound circulation perturbations and normal/bi-
normal wake point perturbations unless these are explicitly eliminated via Eq. (5-36); and
m is the total no. of equality and inequality constraints imposed upon the problem (not
including upper and lower bounds imposed upon the variables). The required storage
arises from the fact that there is a total of 3n+m variables comprised of the n state

variables, xj, 2n Lagrange multipliers, J;; and pip;, associated with each of the lower and

upper bounds of x;, and m Lagrange multipliers, lj, associated with the imposed
constraints, g;; and m+n constraints including the m original imposed constraints and the

additional n Kuhn-Tucker constraints. The simplex tableau columns corresponding to iy;
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and p,; differ only in sign and so only one of the columns must be stored (see Appendix
A). This reduces the tableau column size from (3n+m) to (2n+m).

The SLP approach requires storage space on the order of n by m. Both the SLP and
SQP schemes implicitly enforce the upper and lower bounds on x; as explained in
Appendix A. Thus elimination of the 2n constraints required during the Phase I effort to
enforce these bounds are no longer necessary.

5.4.4 Convergence criteria

The selection of suitable convergence tolerances has proved to be a non-trivial task in
the multi-dimensional optimizations considered here. The different scales for the design

variables (and the x. and y) are determined in the EHPIC/HERO code and taken into
account in convergence tests. However, the chief obstacle in deriving generally
applicable convergence tests is due to the large disparities in gradients and curvatures for
different cost functions and designs. For example, the thrust is typically one or two
orders of magnitude more sensitive to changes in the twist gradient than to sweep
perturbations. Thus it can happen that the twist distribution has essentially converged to
the optimal design, while the sweep distribution is still undergoing significant
modification. A test based upon changes in cost per step might cause premature
termination of the optimization since the changes in thrust level are 'small' in comparison
to the changes that occurred while the twist distribution was still changing significantly.
Thus consideration of the local gradients should be factored into the convergence tests.
Other elements that complicate the definition of an appropriate convergence criterion
include the possibility of inaccurate approximations to the Hessian matrix, [B], in SQP
(can be countered by resetting [B] near a prospective minimum), possible discontinuities
in some-of the first order derivatives which can arise in implementing a stall model, and,
importantly, round-off error.

The following 'classical’' convergence tests arc available in EHPIC/HERO and are
based upon the user supplied tolerance parameter, TOL. The optimization terminates if
any of these tests are satisfied. If the user deems the optimization to have terminated
prematurely, then TOL may be reduced and the restart option of EHPIC/HERO invoked.

a) 1J2-J¢1| < TOL*Min. {I1J0I,R} , for 3 successive optimization steps
b) 1Ja-Ja1| < TOL *Min. {1Ja|,R} , for 3 successive optimization steps

lﬂ_ﬂ4l
c) max.{ l—— < TOL

i SCG)

Ax[*
d) max. ?Cw < TOL (for SLP optimization only )
1

e) q> Qmax
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Here, J4 is the objective (or cost) function at optimization step q, SC(i) is a representative
scale computed in EHPIC/HERO for the design variable under consideration, x{ is the

value of the i-th design variable at optimization step, g, Ax["®* is the move limit for the i-

th design variable and is initialized to DSDMAX at q=0, qmayx is the maximum allowable
number of iterations, and the parameter, R, is an estimate of the reduction in cost that can
be achieved for the given move limits, DSDMAX(i), and is computed from

0
R=02* % * DSDMAX(i) (541)
i i
As explained in section 5.2.4, when employing SLP the move limits, Ax{"*, are reduced

when proximity to the optimum is detected. This process continues until criterion d) is
satisfied.
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6. RESULTS OF SAMPLE PROBLEMS: ROTOR PERFORMANCE

6.1 Previous Validation Work

As noted in the discussion above, meaningful design optimization requires that
the methods used to model rotor performance produce accurate results. Extensive
rformance correlation studies were carried out during the development of the original
EHPIC Mod 0.0 code (Ref. 9), and additional studies were executed by NASA personnel
(Ref. 6) as well as by users of the EHPIC (Mod 1.0) version (Ref. 7). These correlation
studies involved tests of many different rotor configurations, including two-, three-, four-,
five- and six-bladed helicopter main rotors, three tiltrotor configurations, and several tail
rotors. A wide range of designs were examined including tapered planforms, swept
planforms, twisted planforms and combinations of each. Nonlinear as well as linear twist
schedules were investigated including the very high twist levels characteristic of tiltrotor
blades. Several rotors in ground effect have also been studied (Ref. 10, 11). Finally,
recent studies (Ref. 60) of more limited scope have shown that EHPIC compares quite
favorably and in some respects improves upon the performance results obtained using
much more CPU-intensive CFD analyses.

These studies have concluded that the EHPIC code produces very good
performance prediction across a broad range of rotor designs. As with any numerical
analysis, the results obtained are sensitive to certain key input parameters. However, the
results described in Reference 7 were particularly encouraging on this point, in that
calculations carried out over several very different rotor systems produced consistently
good correlation for a fixed set of inputs - i.c., no use of numerical "dials" was necessary
to obtain good results in particular cases. One of the objectives of the present study was
to ensure that the changes implemented during the development of the HERO analysis
produced the same consistently good performance correlation as its parent EHPIC code.
Some changes in the results were unavoidable given the necessity of restructuring the
code to adapt to the requirements of carrying out performance optimization. Also, as
previously discussed, several improvements in the acrodynamic model have been
implemented to eliminate particular limitations of the baseline analysis. The correlation
studies that follow are intended to illustrate the fundamental consistency of the
optimization hover performance model with the original EHPIC code as well as to
highlight the improvements made. , ,

In each of the calculations below, the EHPIC and EHPIC/HERO performance
computations used the same number of trailing filaments, extent of free and prescribed
wake, vortex lattice discretization, and core modeling. To the extent that the results of
the two analyses differ, the differences are analyzed in each particular case. Unless
otherwise specified, standard atmospheric conditions are assumed corresponding to a
speed of sound of 340 m/s (1117 fps) and atmospheric density of 1.205 kg/m3 (.002378
slugs/ft3). Since NASA is currently operating the Mod 1.0 variant of EHPIC,
comparisons of HERO and EHPIC here are made with the 1.0 version.

6.1.1 NASA/NACA test rotors

A data set from an NACA rotor tested in the 1950's provides a simple
configuration with which to start the present correlation study. The first test rotor
examined was that described in Reference 61, which described integrated performance
results on a two-bladed rotor with a radius of 8.17 m. (26.8 ft.) and a constant chord of
0.58 m. (1.91 ft.). The blades featured 8 degrees of linear twist and were tested at tip
Mach numbers of 0.28 and 0.66. An NACA 0012 airfoil section was used across the full
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span of the blade. The wake model here used six filaments trailing from the rotor blade.
Since the test was conducted on a whirl stand elevated 1.5R above the ground, the ground
plane model was invoked to correct for the effect of the image system of vortices. The
blade model used 30 vortex quadrilaterals along the span and one chordwise.

Figures 6-1 and 6-2 show the correlation achieved for both tip Mach number
cases. The correlation is good across most of the range tested, though some differences
start to appear at high thrust. Similar results were obtained with the original EHPIC
code, as described in Reference 9. It is instructive to compare the details of the results
obtained with EHPIC Mod 1.0 against those obtained with EHPIC/HERO since some
modifications have been made to the basic performance model. For simplicity, a case
with Mgp = 0.28 is chosen. Figure 6-3 shows the results of the integrated power and
thrust results for runs using EHPIC Mod 1.0 and EHPIC/HERO over a range of
collectives. The predictions of the two codes are very close, but some small differences

do appear to be present.

Further details are provided by a close examination of a single case. For a root
collective pitch angle of 14 degrees , the following integrated performance results were
obtained:

EHPIC/HERO EHPIC Mod 1.0
Cr 0.003239 0.003261
Cqi 0.0001449 0.0001429
Cop 0.00004454 0.0004446
Cq 0.0001895 0.0001875

These results indicate the typical size of differences in performance predicted by
EHPIC/HERO and EHPIC Mod 1.0. The profile power calculation yields essentially
identical results, as would be expected given that the same airfoil drag characteristics
were read in, though in a different format in the new code. Differences in the thrust and
induced power are larger, and are attributable primarily to shifting the vortex filament
release points to the trailing edge as described in Section 2.3.1. This change was
necessary for the implementation of the high-resolution wake roll-up calculation
described in Section 3. Figure 6-4 shows the distributed thrust, induced power, and total
power for the two calculations. Most of the differences between the two calculations
appear in the tip region, while the computed loading inboard of roughly 0.85R is nearly
identical.

6.1.2 CH-47B rotor

Performance tests for the CH-47B main rotor are described in Reference 62. The
rotor has three blades, each with a constant chord of 0.64 m. (2.1 ft.) and a radius of 9.14
m. (30.0 ft.). The blades feature -9.14 degrees of linear twist and use a 23010-1.58 airfoil
section. The data in Reference 62 was taken at rotor rotation rates of 230, 240, and 288
rpm. The case examined here is 240 rpm, corresponding to a tip- speed of 229.6 m/sec

(753 fps).

The wake model used six filaments trailing from the span, with roughly 2.5 turns
of free wake followed by an additional 1.5 turns of prescribed wake. Thirty vortex
quadrilaterals were used across the span with one chordwise. The integrated performance
predicted for this case is shown in Figure 6-5, indicating good agreement up to high
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thrust levels with some deviation beyond that point. The performance predictions are
similar to those obtained with EHPIC Mod 0.0 in Reference 9.

6.1.3 UH-60A rotor

Recently acquired data on an extensively instrumented UH-60A model rotor has
provided a wealth of potentially useful correlation information for study using
EHPIC/HERO. References 63-65 that describe this test were acquired only shortly
before the end of this effort, and analysis and interpretation of the results is still ongoing.
However, certain major results of the computational studies done to date are available and
are presented here.

The model tests described in References 63-65 involved a 8.86 m. (9.4 ft.)
diameter, Mach scaled model of the four-bladed UH-60A main rotor. The model featured
a chord of .092 m. (0.304 ft.), and was operated at a range of tip Mach numbers between
0.55 and 0.70. This planform features 20 degrees of sweep starting at the 92% radial
station, as well as a distinctive and highly nonlinear twist distribution that includes a twist
'bucket’ over roughly the outer 10% of the blade span (the UH-60 twist distribution is
discussed further in Section 7). The particular case considered here is at tip Mach
number 0.65. The blade uses an SC1095 airfoil across the entire span, except for the
'droop nose' SC1095R8 airfoil between 0.47R and 0.82R. The computational model uses
45 equally spaced quadrilaterals spanwise and one chordwise. Six free filaments are
used, with one capturing the wake of the tip region and five used to model the inboard
sheet. '

Figure 6-6 shows the prediction of integrated loading for Run 68 of Reference 63.
The power prediction is close over most of the range surveyed, though with some
underprediction of the power at higher thrusts. The prediction of thrust as a function of
collective pitch is likewise close, as shown in Figure 6-7. At high thrust levels,
EHPIC/HERO tends to slightly overpredict the actual thrust.

The tests described in References 63-65 involve some runs at very high thrust
coefficient, so it was judged a suitable test case for the static stall model discussed in
Section 2. However, the range of thrust coefficients tested did not in fact pass the cima
level for the airfoil tables tested, as indicated in Figure 6-8. The computations do show
that the qualitative behavior of the present model is reasonable, predicting a drop-off in
thrust growth with collective (Figure 6-8) along with a rapid increase in power required
(Figures 6-9 and 6-10) once the stall model is activated. (The primary purpose of the stall
model is to limit performance at twist angles above the section stall angle during the
optimization process. Most current planform designs operate far below the stall regime
so the stall model will not affect comparisons with test results.)

As noted above, References 63-65 contain a wide range of experimental
measurements suitable for further correlation studies, though the recent (early 1992)
release of the data has precluded detailed consideration here. In particular, Reference 65
documents measured structural deflections that could be of considerable value in
validating the structural deflection model described in Section 4. It is anticipated that
future validation efforts will include such correlations, as well as studies of the spanwise
loading and wake geometry data contained therein.

6.1.4 XV-15rotor

As noted in the wake geometry calculations in Section 3, the XV-15 rotor is a
three bladed configuration with a radius of 3.81 m. (12.5 ft.) and a constant chord of
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0.354 m. (1.16 ft.). The twist distribution features a nonlinear twist distribution with a
total washout of approximately forty degrees across the span. Each blade uses five
NACA 64-class airfoils across the span. The tip Mach number for the cases studied here
was 0.69, and the measured performance is drawn from Reference 45. The same blade
model with 45 vortex quadrilaterals spanwise and 1 chordwise used in Section 3 was used
here, though the present calculations employ eight equally spaced filaments to obtain
good resolution of the spanwise distribution of induced velocity.

Figure 6-11 shows the correlation achieved across the moderate to high thrust
range of most practical interest. The calculations are compared to two different runs from
Reference 45 that bracket most of the range of data taken in the test. The correlation is
good across the range examined, though there is some tendency to underpredict the power
at low thrust levels.

6.1.5 V-22 rotor

Reference 27 discusses performance measurements taken on a 0.658-scale V-22
rotor. Like the XV-15, the V-22 is a three-bladed rotor with a large, nonlinear washout
across the span, with a total of approximately 40 degrees of twist across the span. The
scaled V-22 rotor has the same radius as the XV-15 but also features a tapered planform,
with the chord ramping down from 0.58 m. (1.9 ft.) at the root to 0.405 m. (1.33 ft.) at the
tip. The tip Mach number for these tests was 0.68, corresponding to a tip speed of 231.7
m/sec (759.7 ft/sec) at standard conditions. The wake and blade model were identical to
those used for the XV-15 case. The results obtained here were likewise similar; Figure 6-
12 shows the correlation of integrated performance, again indicating good general
agrecgngt, though with some errors appearing at both the low and high end of the range
examined.

6.2 Performance in Axial Flight

Only limited measured performance data is presently available for proprotors in
high speed axial flight. One of the designs of high current interest in this area is the V-22
rotor, whose performance is discussed in Reference 66. Felker describes the following
closed-form semi-empirical expression for integrated rotor power that has been quite
successful in capturing on-design propulsive efficiency for the V-22 (Ref. 67).

CQ=CQp+uCT+§:E )

M/ 2
Cop = cCQO{(I +§u2)~/1 +i? + 2yt ln(-l-———:l—tf—ﬂ
where f; is an empirically-derived compressibility adjustment factor for the profile drag:

[ 1, if M7s < 0.63, otherwise \
\1+42.51 (M75-0.63) + 3476 (M5 - 0.63 )|

My = Ma/\/ 1+$

fc=
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In order to test the capability of EHPIC/HERO to successfully analyze rotors in high
speed axial flight this formula was used in place of directly measured performance.

Curves of rotor propulsive efficiency HCr/C; as a function of thrust coefficient were
made for two flight conditions: first, i = 0.34 and My,.; = 0.62 and, second, L = 0.67 and
Mpa =0.59.

Since rotor wake effects are very weak in high speed axial flight, very simple
wake models are appropriate for these flight conditions. In this case, five free filaments
with one turn of free wake were used, though the filaments are quickly convected
downstream, behaving essentially as a kinematic wake. With thirty vortex quadrilaterals
across the span, good resolution of spanwise loading could be expected. The integrated
performance results shown in Figures 6-13 and 6-14 indicate that the major features of
rotor performance are in fact being captured. For the moderate speed case shown in
Figure 6-13, the prediction accuracy is good across most of the range, while for the high
speed case shown in Figure 6-14, a consistent underprediction of propulsive efficiency is
apparent. The presence of such a constant decrement suggests inadequacies in the profile
power calculation, possibly in the high Mach number section data for the airfoils used on

the rotor.

Figure 6-15 shows a comparison between predicted and measured performance
for the V-22 rotor in low speed axial flight. A small range of EHPIC/HERO results are
shown at three advance ratios, p = .0236, .0313, and .0381. Only one test data point was
available at each of these advance ratios. EHPIC/HERO shows good agreement at the
two lower values but begins to over-predict the torque at p = .0381. Further test data will
have to be obtained in order to determine whether this trend occurs with increasing
advance ratio or increasing thrust.
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7. RESULTS OF SAMPLE PROBLEMS: DESIGN OPTIMIZATION

This section presents results that illustrate the application of the EHPIC/HERO code
in optimization calculations for rotors in hover and axial flight. The initial focus of
interest is on the problem of power minimization at a given rotor thrust for rotors in
hover. This is the rotary-wing analog to the classical fixed-wing drag minimization
problem that still commands attention today. The power minimization problem is
likewise critical in rotorcraft design because of its importance in sizing the powerplant to
satisfy payload requirements. Here, we analyze several representative configurations to
both illustrate the capabilities of the present formulation and to gain insight into
promising general design strategies.

As noted in Section 5, EHPIC/HERO has the ability to define a variety of objective
functions besides total rotor power. Gross thrust, hover Figure of Merit, axial propulsive
efficiency, and individual components of total power (i.e., induced and profile) may be
selected, as may weighted combinations of these quantitiecs. We will show results of
selected problems executed using some of these alternative objective functions for
hovering rotors, including thrust maximization for a fixed power.

EHPIC/HERO is also suited to the analysis of rotors in axial flight, as discussed in
Section 6. The design requirements of rotors in high speed axial flight (e.g., tiltrotors in
cruise) are distinct from those of rotors in hover. The influence of the wake is much
reduced, so much so that uniform inflow approximations can often be used with some
success, as the discussion of performance results in Section 6 indicates. However, even
though the free wake feature of the present analysis is not as important as in hover, the
lifting surface/vortex lattice aerodynamic model in EHPIC/HERO can be used to good
effect here, since the design evolution of proprotors often calls for swept and variable
chord planforms. The performance results for axial flight calculations to date have been
promising, and it is anticipated that application of the design optimization process to
rotors in high speed axial flight will yield informative results.

Finally, it should be noted that the purpose of these demonstration calculations was
not to comprehensively exercise the extensive set of design optimization options within
EHPIC/HERO. The design evolution in particular cases is a function of the constraints
imposed, the algorithms selected, and to some extent of the numerical resolution of the
blade and the wake that is compatible with the user's computational constraints. The
immediate objective here is to present calculations that illustrate some of the major
capabilities of the present analysis. As will be discussed, certain broad trends were
observed in the calculations performed to date that appear to represent generally desirable
design strategies for rotor blades, while other cases provoke as many questions as they
answer.

7.1 Sample Calculations in Hover: Rotor Power Minimization at Constant Thrust

7.1.1 Conventional low-twist helicopter designs

Demonstration calculations of performance optimization were carried out on a
planform similar to the UH-60A model rotor analyzed in Section 6, but without the tip
sweep and twist 'bucket' characteristic of that blade (Figure 7-1). The resulting blade was
straight and untapered, with a radius of 4.68 ft. and a constant chord of 0.303 ft. The
resulting twist distribution yields a -16 deg. twist rate across the blade radius. An initial
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condition with thrust coefficient of 0.00664 was selected, which corresponds to Ct/c of
0.0805 and a Figure of Merit of 0.721.

The same wake configuration used in the performance studies of the UH-60A
model blade in Section 6 was used here. The blade was discretized into ten unequal
segments, ranging in width from 0.125R to 0.025R, with the smaller elements
concentrated near the tip to capture the expected rapid design gradients in that region.
Unless otherwise noted in the text below, the sequential linear programming (SLP) option
was used, and all blades were considered rigid (no structural deformation allowed). As
described previously, while the structural model has been validated through the use of
idealized calculations and comparisons with analytical results, a calibration against
measured blade deflection has not yet been performed.

Several different combinations of design variables were selected for investigation.
These were: twist and tip sweep; twist and tip anhedral; and twist and variable chord. In
each case, the twist was constrained to have twist changes between -8.5 and +1.5 degrees
on each segment. This 10 degree range was judged to give ample latitude for potentially
interesting design trends to appear without producing unrealistic configurations.

Twist and tip sweep: In this case, the outer 7% of the blade was allowed to sweep
up to +/-30 deg. The results of this case are summarized in Figures 7-2 to 7-4. Figure 7-
2 shows the history of the evolution of the hover Figure of Merit during the calculation,
as it rises to roughly 0.75 from its initial value of 0.721. Though the calculation dithers
considerably around the plateau, the bulk of the improvement comes in the first fifteen
design optimization steps, during which time the tip sweep angle ramps up monotonically
from zero to the upper bound of 30 deg. The twist distribution undergoes dramatic
evolution during this period also, as shown in Figure 7-4. The distribution begins to
develop the twist bucket near the tip originally built in to the UH-60A. Some tendency to
increased twist over the inboard part of the blade is also observed. The overall tendency
of the evolution of the bound circulation distribution, though, is to flatten out the peak in
circulation seen near the tip and to produce a much more uniform distribution (Fig. 7-3).
As will be seen, this trend is evident in a wide variety of the cases studied to date.

Twist and tip anhedral: This case produces results in many respects qualitatively
similar to the previous exercise. The same discretization of the blade was used, with ten
segments of decreasing span being used. Here the outer 17% of the blade was allowed to
deflect in anhedral, with the deflection limited to +/-15 deg. Again the twist distribution
was allowed to vary across the full span. Figure 7-5 shows the history of the Figure of
Merit as a function of number of optimization steps. Once again, a rapid rise is observed
during which the anhedral angle (tip droop) ramps rapidly to its prescribed limit. The
relatively large fluctuations observed in the Figure of Merit in steps 10-15 are due to
adjustments in the strength and position of the wake. These changes settle down to a
relatively stable plateau after steps 15-20. The predicted twist distribution associated
with the drooped tip is shown in Figure 7-7, showing a smaller twist bucket near the tip,
though again with larger twist angles toward the root. The resulting bound circulation
distribution at the termination of the calculation contains an anomalous trough that
appeared to be diminishing as the calculation plateaued around step 40 (Figure 7-6).

Twist and chord: Here, both the chord and the twist distribution were allowed to
vary. The chord was constrained to stay at its baseline value of 0.305 ft. over the inner
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40% of the span, while outboard of this point increases of up to 33% over the baseline
were allowed; the minimum permissible chord in this region was set at 0.1 ft., or one
third of the baseline. In this case, the Figure of Merit increased from the baseline value
to just under 0.77 in thirty steps after which point the performance leveled off. The chord
distribution tapered gradually down to (.18 ft. from the end of the fixed-chord segment,
while chords as large or larger than the baseline appeared in the immediate vicinity of the
tip. Figure 7-9 shows the twist distribution obtained for this case, which is similar to the
other two cases just discussed. The tendency to a constant circulation distribution is
shared with the previous calculations. Further investigation will be required to determine
if the increased chord at the planform tip is a consequence of the lattice discretization
used or if it represents a physically meaningful event.

These calculations indicate that representative baseline configurations can achieve
substantial performance increments of 3-4 points in Figure of Merit without excessive or
radical design departures. What is of more interest than the particular numerical results
achieved is the appearance of two trends in the design evolution: the tendency to
smoother, flatter bound circulation distributions and the appearance of features
resembling the twist bucket shown in Figure 7-1 near the tip. Some indications of the
desirability of flatter circulation distributions were present in the sample cases studied in
Reference 4, and the trend is reasonable in light of classical studies of the advantages of
uniform downwash fields. A flat circulation distribution minimizes the strength of the
wake circulation and hence, in general, minimizes the induced power caused by wake
downwash on the blade.

The appearance of the twist bucket, though found empirically desirable by the
designers of the UH-60, is not a feature that emerges naturally from simple performance
analysis. It is noteworthy that the trend toward this particular design feature is driven
largely by the minimization of induced rather than profile power. Repeating the
calculations shown above with the profile power artificially set to zero - while obviously
leading to lower overall power - still yields twist distributions with the down-up
distribution near the tip characteristic of the bucket in Figure 7-1. A likely interpretation
is that the down-up twist distribution contributes to the leveling of the circulation
distribution by dropping the load near the peak and increasing it at the blade tip. A
similar phenomenon can be seen near the root.

7.1.2 Tiltrotor

The design optimization of a tiltrotor in hover presents a substantially different
challenge from the computations just described for more conventional low-twist baseline
designs. A representative case was examined to investigate possible design improvements
in baseline tiltrotor designs. The case considered here for illustration is an XV-15 rotor
with the same operating state and planform as those studied in Section 6. For this case,
optimization of twist and tip sweep was considered. The twist changes were effectively
unconstrained, while sweep was constrained to be zero except for the last 10% of the
blade, which could adopt a sweep of +/-30 deg. The thrust coefficient of the base case
was 0.0127, while the Figure of Merit was 0.789.

The evolution of the Figure of Merit is shown in Figure 7-10. The history is
notably uneven, but levels off around 0.815, corresponding to roughly a 3% power .
reduction at constant thrust. The unevenness in the advance of the Figure of Merit is
attributable in part to oscillations in the tip sweep angle as it ramps up from zero to 30
degrees at step 30. The total performance increment for this case is relatively modest, but
this is not surprising if the initial and final bound circulation distributions are considered
(Figure 7-11). The initial bound circulation distribution here was already relatively
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uniform and left little latitude for subsequent modifications. It is noteworthy, though,
that the principal change made by the analysis is the introduction of an up-twist near the
blade tip (Figure 7-12). This feature is qualitatively similar to that found in the
calculations in Section 7.1. Its appearance in a configuration radically different from the
low-twist, four-bladed design just discussed suggests that the introduction of this type of
twist distribution may be a generically desirable design feature for a wide variety of

rotors.
7.2 Alternate Objective Functions

All of the cases considered to this point have been power minimizations at constant
thrust. Many other types of performance optimization problems are of practical interest,
and a wide range of objective functions can be accommodated, as discussed in Section 5.
A sample calculation was undertaken to demonstrate this capability; the problem involves
thrust maximization at constant power, corresponding conceptually to the task of
maximizing payload for a given power plant. The base case used here was the same UH-
60A-class rotor studied in Section 7.1.

Starting from the baseline thrust coefficient of 0.00664, the design was allowed to
evolve with the same constraints imposed in the twist and tip sweep optimization
described in Section 7.1. The resulting histories of thrust and Figure of Merit are shown
in Figures 7-13 and 7-14. A thrust increase of roughly 2.9% is achieved, with a
corresponding increase in Figure of Merit of approximately .038 as a consequence of the
constant power constraint. The spanwise loading and geometric twist (Figures 7-15 and
7-16) for this 'thrust optimized’ design are similar to the distributions obtained in the
'‘power optimized' design discussed above.

As described in Section 5, many other candidate objective functions can be
accommodated within EHPIC/HERO, including weighted functions of thrust, power (and

its induced and profile components), Figure of Merit, and propulsive efficiency (uC1/Cp)
for axial flight. The latter case is now considered.

7.3 Axial Flight: Tiltrotor/Proprotor Case

Existing and proposed tiltrotor designs call for blade designs that can operate
efficiently at very high axial flow rates, typically as high as 450 fps. The discussion in
Section 6 included predictions of the performance of a V-22 ultrotor in two cruise
conditions. Here, a study was undertaken to investigate the design trends when improved
designs were sought for a representative high speed case.

Adopting a strategy analogous to that described for conventional rotors in Section
7.1.1, the baseline configuration selected was a nonspecific but representative tiltrotor
planform, having characteristics similar to the 0.658-scale V-22 rotor and the XV-15
rotor studied in Section 6. The design featured a three-bladed 3.81 m. (12.5 ft.) radius
rotor with a constant chord of 0.457 m. (1.5 ft.) yielding a solidity of 0.088 and -40
degrees of washout, assumed to be linearly distributed from the root to the tip. Given the
selected operating condition of 112.5 m/sec (369 ft/sec or 219 kts), the advance ratio was
0.67 and the helical tip Mach number was 0.59. Each blade uses five NACA 64-class
airfoils across the span as in the XV-15 case discussed previously in Section 6.1.4,

The blade was initialized with 30 constant-width vortex quadrilaterals across the

span and one chordwise. Because of the dominance of free stream convection, a
relatively coarse wake model with a single turn of free wake on five free filaments is
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Figure 7-13. Figure of merit history during design optimization of a UH-60A-
class four bladed rotor: thrust maximization using twist and sweep.
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Figure 7-14. Thrust coefficient history during design optimization of a UH-60A-
class four bladed rotor: thrust maximization using twist and sweep.
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Figure 7-15. Initial (solid) and final (dashed) bound circulation for the thrust
maximization calculation.
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adequate. The span was discretized into ten segments outboard of the cutout, each
spanning 0.09R and having -4.0 degrees of washout.

The calculation was set up to maximize the propulsive efficiency at a constant
thrust coefficient of 0.0085, representing a relatively heavily loaded case. All of the
major design variables were allowed to participate in the optimization, including twist,
chord, sweep, and anhedral. The twist was again constrained to have a maximum delta of
between -8.5 and +1.5 across the segment. Chord was constrained not to decrease over
the first 0.37R of the blade, but was allowed to taper down to 50% of the baseline chord
outboard of this. Sweep and anhedral angles were kept at 0 degrees inboard of 0.46R and
limited to +/-30 degrees outboard of this. The blades were assumed rigid, with no
structural deformation included.

The improvement in propulsive efficiency over 70 optimization steps is shown in
Figure 7-17, indicating that the propulsive efficiency has leveled off at roughly 0.933,
representing an increment of 0.023 over the baseline value. The bound circulation
distribution shown in Figure 7-18 indicates that the familiar trend to a more uniform load
distribution holds here as well. The geometric twist results (Figure 7-19) show relatively
modest changes, though the up-twist near the tip characteristic of the hover results does

not appear.

The baseline and modified planforms are shown in Figures 7-20 and 7-21
respectively. Sweep, anhedral and chord distributions are shown in Figures 7-22 through
7-24. The axial flight case exhibits trends similar to those observed in the previous cases.
The sweep and chord distributions adjust in a manner that flattens out the circulation
distribution as much as possible which reduces the induced torque. This is best seen by
the shape of the optimized chord distribution which is actually an inverted image of the
circulation distribution. Though the sweep back will afford a small reduction in profile
torque due to compressibility effects, the primary effect for rotorcraft appears to be the
reduction of induced torque caused by reducing the circulation at the high speed tip. The
outboard anhedral also reduces induced torque, in part by pushing the tip vortex
downward away from the blade. Even though this latter effect is lessened in axial flight,
the optimization algorithm will still droop the tip if any increment in performance is to be
gained. This fact is important to take into consideration when analyzing optimized
planforms; large excursions in sweep and anhedral often have a smaller effect on
performance than minor adjustments in the twist distribution. It is these design variables
having the least influence that will often change the most.

7.4 Computation Time

Design optimization calculations are inherently computationally intensive since
they inevitably involve repeated calls to the performance evaluation routines. As noted
earlier in this report, the formulation of the original EHPIC code helps to reduce this
burden since many of the influence coefficients needed to fill the tableau used to solve
the optimization problem are computed as a matter of course in the performance
evaluation. Nevertheless, the computational demands of EHPIC/HERO can become
substantial as the number of design degrees of freedom are increased. The overall
objective of the present effort in this respect was to ensure that EHPIC/HERO was no
more CPU-intensive on 1992 computational hardware than was EHPIC Mod 0.0 on 1987
hardware. Since EHPIC has gained acceptance in the rotorcraft industry for routine
aerodynamic calculations, this was judged to be a reasonable criterion by which to gauge
the usefulness of EHPIC/HERO.
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Figure 7-20. Top view of rotor configurations for the tiltrotor propulsive
efficiency maximization.
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Figure 7-21. Oblique view of rotor configurations for the tiltrotor propulsive
efficiency maximization.
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This objective has been achieved. The sample calculations presented in this section
typically run 6-10 CPU hours on an Iris 340 workstation. These run times are
comparable to those required by complex EHPIC Mod 0.0 runs on the MicroVAX II that
was originally used for EHPIC development during 1986 and 1987. Indeed, the present
calculations were relatively conservative, in that they did not take full advantage of the
options available to bypass updates of the optimization tableau. Each of the calculations
shown in this section were run with KOPT=1, NFRAC=2, and KWIKN=2 (see Section 5
or Reference 12 for definitions of these parameters), and it is quite likely that additional
speed-up could have been achieved with larger steps between updates. Even so,
additional effort to improve computational efficiency would nonetheless be desirable.
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8. SUMMARY

The primary purpose of this report has been to document the development and
testing of the EHPIC/HERO rotor performance optimization code. EHPIC/HERO has
been designed to retain the strengths of the original EHPIC free wake hover performance
code while both extending its capabilities and adding wholly new features to compute
structural deflection, high-resolution rotor wake flows, and, most importantly, optimized
rotor designs for improved performance.

The major refinements to the basic hover model include the addition of a lift stall
model, the inclusion of scan planes for induced velocity calculations, the expansion of
previous table look-up routines to support structural deflection calculations, and the
revision of blade/wake coupling to facilitate both optimization and high-resolution rotor
wake computations. The new stall model produces the comect qualitative trends for
highly loaded rotors. The results of sample calculations of time-averaged induced
velocities using the new scan plane capability have likewise been promising.
Implementation of a high-resolution tip wake calculation option has also been successful,
and testing on representative rotor configurations has demonstrated the code's ability to
capture the structure of the rolling-up wake from blades with shallow bound circulation
gradients near the tip. Finally, the revised approach to coupling the blade and the wake
described in Section 2 has proved to be robust, as was found in the long performance
optimizaétion runs - typically involving large changes in bound circulation - described in
Section 6.

The formulation and implementation of a finite element model of the blade
structure has been described. The present model uses 14-d.o.f beam/rod elements to
compute bending, torsional, axial, and in-plane deflection due to blade rotation and static
aerodynamic loading. Test calculations on idealized model problems have been
successful and correlation with measured deflections is awaiting full analysis of recently
acquired data on the UH-60A model rotor hover tests.

A combined linear programming/quadratic programming (LP/QP) approach to
design optimization has been formulated and implemented. The optimization analysis
accommodates all of the major planform variables as well as objective functions
involving combinations of thrust, power (and its components), propulsive efficiency, or
hover Figure of Merit. User-imposed constraints can be imposed on these variables in
addition to performance targets based on the selected objective functions. Sequential
linear programming (SLP) is the basic mode of operation of the analysis, though an SQP
option exists to find optimal solutions that exist away from the constraint boundaries.
Limited updating of the tableau may be invoked to reduce CPU requirements in cases
where the design evolution is well-behaved.

A limited correlation study on helicopter rotors and tiltrotors in hover and axial
flight has demonstrated that good accuracy can be achieved in integrated performance
prediction using the EHPIC/HERO code. Demonstration calculations of the performance
optimizer have also been carried out, using twist, chord, sweep, and anhedral in various
combinations as design variables. In the cases examined, the optimum design obtained
was a strong function of the constraints selected for that particular case (a well
established feature of design optimization in general). The motivation for the constraint
choices was to exercise the major features of the code in cases of practical interest; no
claim is made as to the comprehensiveness of the tests undertaken here. However, two
broad, interrelated trends have been identified that appear to constitute generally desirable
design strategies. One of these is a manifestation of a generally well-understood feature
of hover performance analysis: uniform distributions of bound circulation contribute to
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the minimization of rotor power for a given thrust. A qualitatively similar principle
appears to be at work in both the hover thrust maximization problcms studied and the

sample calculations in high speed axial flight.

The second result is related to the first. Results from a wide variety of cases
suggest that the addition of the 'down-up’ twist or 'twist bucket' implemented on the UH-
60A main rotor is a generally advantageous feature of blade design. The trend to this
type of feature emerged in hovering rotor cases for combinations of twist with chord,
sweep, and anhedral and for both low-twist, four-bladed rotors and high-twist, three-
bladed tiltrotors. Preliminary calculations indicate this design feature evolves in power
minimization problems even in cases where profile drag is excluded, suggesting that it is
driven by the sensitivity of induced power to the wake-induced velocity field and the
imperative to produce more uniform circulation distributions. Additional computational
studies will be carried out to confirm this observation and to identify analogous strategies

for other design variables.

The results and computational experience of work to date on this analysis have
also pointed out the need for additional effort in a variety of areas. The full exploitation
of preliminary work on inclusion of models of vortex/tip loading using ANM would aid
the resolution of vortex-induced loading. Further reductions in CPU time can be realized
by exploiting existing simplifications available in the present optimization analysis. The
optimized designs obtained with rigid blade analyses should be repeated with structural
deflection in place to examine the effect on the solutions obtained to date. The
preliminary work done on including constraints on the design from forward flight
conditions should be extended to enhance the realism of the hover-optimized designs.
Finally, extensions to include airfoil, blade thickness effects, and structural tailoring in
the design optimization should be considered to supplement the already substantial
capabilities of EHPIC/HERO.
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APPENDIX A
DESCRIPTION OF THE SIMPLEX ALGORITHM

A brief summary of some of the features in the present implementation of the simplex
algorithm is given here. Familiarity with the fundamental terminology and steps in an LP
algorithm is presumed. For a review of the basic method see References 52 and 56. We
shall concern ourselves here primarily with the extensions required for implicit

incorporation of upper and lower bounds upon the state variables, AX, and for solving
QP problems. In the following, we refer to those components of X which are not at one
of their specified bounds as basic variables. The remaining entries form the non-basic

set.

The simplex algorithm employed here is a highly revised and extended version of the
routine given in Reference 52. The routine seeks to solve the LP problem:

Min J=J0 + cTAX (A-1a)

subject to the constraints:
v <0 bi2[A]AX , gX)<0
§X) + VgiX) AX - by 2[A2] AX . ;(X)>0 -

X+ VX AX = 0 — by=[Aj]aX (A-1c)

AX;20 (A-1d)
where

bi=-{gX) ) b={g®X ): b= (& *sign(gX)))

(A-le)
and the matrices,

[A1]=VgX) ; [Ad=-VgX) ; [As]=-V&&) *sign{VgX))
(A-1f)
The b; are defined so as to have all entries 2 0. The optimal solution is attained in two

stages. In the first stage a feasible solution AX satisfying the imposed constraints is
obtained by the introduction of slack variables and the construction of an auxiliary cost

function. At the end of this stage, the actual optimization process is performed and AX
varied via a sequence of pivot operations so that during each operation the cost is
reduced. The process continues until no further reduction in cost is possible and thus

returns with the optimal vector, AX.

A.1 Slack Variables and Determination of a Feasible Solution

The standard linear programming problem is posed in terms of a set of equality
constraints and the requirement that all Ax;20. Thus the inequality constraints are
transformed into equality constraints by the introduction of slack variables, §; and ,:

by =[A]AX +51 ; br=[A2]AX -5 (A-2a)
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Observe that the first constraint, b; = [A;] AX + §;, is easy to satisfy by setting, AX=0,
and §5;=b;. This is due to the positivity of the components of b;. This is not generally the
case for the remaining inequalities associated with b2 and b3. Thus, in order to determine
a feasible solution the constraint parameters, z; and z3, are introduced to obtain the

augmented set of constraints:

bi=[A11AX +51 ; o =[AJAX-s2+22 ;i D3=[A3]AX +23 (A-3a)
Ax20 ; 51,8220 ;5 zp,2320 (A-3b)

Specification of an initial solution to Egs. (A-3) is now rendered trivial and is given by:

AX=0 ; s1=b; 5 =0 ; 5370 ; =by ; 237 (A-4)

Since the b;20, the 5,20 and z;20. Furthermore, {§;, 2, z3} forms the set of basic (non-

zero) variables and {AX, s5, 53} forms the set of non-basic variables. One now has a set
of equality constraints, Eq. (A-3a), subject to conditions, Eq. (A-3b) which in conjunction
with an appropriate linear cost function, define a linear programming problem. To obtain
a feasible solution to the original problem, Eqgs. (A-1), we must first remove the
constraints variables, zj, i.e., conduct pivot operations aimed at reducing z;=0, or
equivalently causing the g; to leave the basic set. Thus, the appropriate cost function to
be minimized is chosen as the sum of the components of z; and z3:

f2= zi+ Y i (A-5)
m2 m3

where m2 and m3 are the dimensions of the vectors z, and z3 or equivalently the
dimensions of b and b3 respectively. The simplex machinery involving pivot selection
and pivoting operations may now be applied to this minimization problem. If the
minimizing solution subject to the constraints satisfies min{f,}=0 then this implies that
the zp; and z3; are zero and the corresponding original constraints are satisfied. i.e., by =

[A7] AX - 55, and b3 = [A3] AX. The simplex pivoting strategy guarantecs that the other
constraints involving b and the positivity requirements upon the variables is maintained.
If min{f,}>0, then one or more of the zy; or z3; are positive and cannot be reduced further
implying that the corresponding constraint is not satisfied. The initial value of f,

f,=) by+ ) by | (A-6)
m2 m3

so that the progress of the simplex algorithm may be monitored by tracking the value of
f, through the sequence of simplex iterations. The function, f;, must be expressed in
terms of the non-basic variables which is easily accomplished by referring to the
associated constraints: '

=k - [AAX+5 ; 3= D3-[A3]AX (A-7)

so that:
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f, = Z2b2i + Z3b3i - (E[Azl + E[Asl} AX + 2252i (A-8)

m2 m3

This is conveniently summarized in the form of a tableau:

Table A-1
AX ) Z3 Basic Variables

JO CT

b, [A1)i 01 1 0] 51

b [Ag); Iyl { [0] b3

b [As]; [0 [ Tl | 2

f20 | m2 m3 oT oT

2[A2]ki + Z[A3]h
k k
where, f0 = 2, boi+ 2, bs; (A-9)
m2 m3 )

and ¢, denotes the vector of dimension m with unit entries, and [In,] is the unit matrix of
order m. The bottom row may be considered as an additional equality constraint as far as
the simplex pivoting operations are concerned. The last three columns in the table
correspond to the basic variables and form a unit matrix of dimension (m1+m2+m3).
Since pivoting operations essentially permute the unit column vectors within the tableau
it is only necessary to store the remaining tableau in computer memory and keep track of
the basic and non-basic variables using index lists. Thus the last three columns are not
actually stored in the array used in EHPIC/HERO, which leads to an m by m reduction in
memory requirements with m being the total number of constraints. Furthermore, since
the column vectors in the tableau for g, are identical to those for z, except for sign, and
the pivoting operations affect both columns in the same way, an m by mj reduction in
tableau space is effected by tracking these also with an index list, due consideration being
made for sign. Procedurally, when a given component z;; leaves the basic set (i.e.
becomes zero), it is replaced by the associated so; variable, and the tableau modified by
reversing the sign of the associated column vector. Thus, zy; is eliminated from the set of
variables under consideration. When a component z3; leaves the basic set it becomes a
non-basic variable identified with column, j, in the tableau. Since z3; is not used in
subsequent computations, the column is henceforth omitted from consideration as a pivot
column.

A.2 Implementation of Upper and Lower Bounds

In the above discussion a lower bound was implicitly imposed upon the Ax; by the

positivity requirements, Ax;>0. This can easily be extended to any set of lower bounds, 1;,
by simple linear transformation of the defining variables. To impose upper bounds upon

AX the pivoting strategy is modified following the procedures outlined by Luenberger,
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Reference 56. Whereas in the original algorithm, the variables are referred to their lower
(zero) bounds, each variable can now also be referred relative to its upper bound,
UBND(). An integer array, IBND(i) is employed to indicate which bound the variable x;
is referred to. The pivot selection procedure is now as follows. The upper bound for
each variable, Xx;, is set by the user (design variables, d) or elsewhere in the code (xc, Y-

The upper bound for each of the §;, $2, 22, and z3 is arbitrarily set to a large number. The
same is true of the Lagrange multipliers when conducting QP problems.

1) The non-basic variable to be pivoted, x;j, is determined. This is done in the same
manner as in the single bounded case and is accomplished by searching the row
corresponding to f; (when finding a feasible solution) or J (when determining the optimal
solution) and finding the column, j, with minimum entry. If this value is positive then no
further improvement is possible. Otherwise we proceed with the step 2).

2) There are now three possible moves a) The non-basic variable, x;, simply goes to
its opposite bound; b) x; enters the basic set by being pivoted with a basic variable, x;,
and x; returns to its old bound (this is the usual pivoting procedure for the single bound
case); c) same as b) except that the variable x; is brought to its opposire bound. To
determine both the action taken and for cases b) and ¢) which basic variable, x;, is to be
pivoted determine the minimum of:

a) UBND(i)
b) :Ll;% 2j0/ajj
c) min ( ajp— UBND() )/a;

aj;<0

where ajj is the entry in the above table corresponding to constraint, i, and nonbasic
variable, j, and ajg is the leftmost column entry of constraint, i.

3) Depending upon the minimum value in step 2), execute the operations associated
with a), b), or ¢). For details of the pivot operation see Reference 56 noting that this is
implemented upon the compact storage scheme of Reference 58.

A.3 Extension to QP Problems

Each of the quadratic programming problems is solved by a modified version of the
simplex algorithm. The Kuhn-Tucker conditions are simply linear equality conditions
and if these are satisfied together with the original imposed constraints then one has the
solution to the QP problem. However, the difficulty lies in meeting the criterion, Eq. (5-
14b,c), which forms a nonlinear constraint. The solution approach follows that of Wolfe
(Reference 59) and involves a two stage procedure as in the LP case. In the first stage a
feasible solution satisfying the original constraints is derived in an entirely analogous
manner as in LP. Starting with the feasible solution thus obtained, the additional Kuhn-
Tucker equality constraints are then imposed and a new feasible solution satisfying the
entire set of constraints is sought. The nonlinear condition, Eq. (5-14b,c), is implicitly
satisfied by modifying the logic used in selecting the pivot element in the simplex
pivoting process.

The Kuhn-Tucker criteria augment the original set of imposed constraints by n further
equality constraints together with the orthogonality requirements upon pairs of Lagrange
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multipliers and constraints. The equality constraints fall directly into the LP capability of
the simplex algorithm. It is the enforcement of orthogonality between certain pairs of
variables necessitates modifications of the method. Recalling the Kuhn-Tucker

conditions, Egs. (5-14):
0= VI(X)+[B] AX +[A1T -A§] Aj+[1 (g, - ;_;1)+[’A'§ Jae  (A-108)

Hii (Ax; - AL) = 0 ; pg; (Auj=Ax;) = 0 5 gy, Hy; 2 0, G=1,....n)

(A-10b)
/11 $j = 0 ; 2’3 20 (G=1,...mi) (A-10c)
Ax unbounded (k=mi+l,...,me) (A-10d)

where {sj}={s1 , 52} are the slack variables associated with the inequality constraints, and

['A? ] =[V gkCX)]T and is equivalent to A3T except for the sign reordering defined by

Eq. (A-1b). There are n new equality constraints and m+2n new Lagrange multiplier
variables. The condition Zj sj = 0 is equivalent to the stipulation that Aj can only enter

basic set if s; is zero implying that the corresponding inequality constraint is active (i.e.,
satisfied exactly).

The Lagrange multipliers associated with the imposed equality constraints is
unbounded and so can be eliminated from the set of variables by solving for them directly

using ms of the n Kuhn-Tucker equality constraints. The matrix, [K} ] is partitioned,

[K§ ] = [XKTI'?;] (A-11)
n-m

where the rank of [X$3] is m3. The rows of [X;ﬁ] are chosen by searching for

maximum pivots so that [2,1;,3] is well conditioned. Then,

Ao =[Ana] {VI) + (BIAX + [AT A3 + (u-ny))
(A-12)

where the subscript (¢)p,3 refers to the row partitions of the argument corresponding to
those of [X$3]. These equations may now be dropped from the Kuhn-Tucker
conditions. The remaining n-m3 Kuhn-Tucker equations are modified by substituting for
Ak. The reduced set of n-m3 Kuhn-Tucker conditions then takes the form:

0=-¢c+[QAX + R]A + T2 -up) (A-13a)
ci20 (A-13b)
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together with the original orthogonality requirements, Egs. (A-10b,c). The matrices [Q],
[R], and [T] are obtained by substituting for Ak in the remaining n-m3 rows of the original
Kuhn-Tucker equations, Eq. (A-10a). The condition ¢; 2 0 is effected by reversing the
sign of each entry in row i if necessary.

In the first stage, the additional vectors, z2 and z3, are temporarily introduced as
before so that an initial feasible vector satisfying all augmented imposed constraints,
Eq. (A-3), can be found. Similarly, the vector, zT is introduced so that the Kuhn-Tucker
equality constraints become:

c=[QIAX + [R1A; + T Qlp— 4y) + ZKT (A-142)
zxT20 (A-14b)

A feasible solution vector satisfying all constraints and the orthogonality requirements is
obtained by simply setting all of the Lagrange multipliers to zero, ZkT=%, and initializing
the remaining variables as in Eqs. (A-4). The resulting tableau reads:

Table A-2
AX $? Ai i1 o Basic Variables

b] A O ] [0] [ [0 [ (0] 51

by [Ag); Tyl | 101 | [0 | 10] Z_

by Asli ] | 10 [ 0] | (0] Z3

fg Q; {[0] ] R] [[T] | [T ZKT

20 m2 m3 “1®m2
2[A2]ki + Z[AB]h
_k k

where the final row is formed in exactly the same manner as in the LP case. The last
three blocks of the final row are not used in stage 1. During this first stage, the Lagrange
multipliers remain at their lower bounds and are skipped when determining the pivot
columns. Therefore, the orthogonality requirements imposed by the Kuhn-Tucker
conditions is maintained. Note however, that the pivot operations basically add multiples
of the pivot row to all of the other rows so that the matrix [Q] will be modified. The
matrices [R] and [T] remain unaffected since all other entries in the associated column
blocks are zero.

From the above table it is clear that the columns pertaining to j11; and Hy; are identical

except for the sign. Also, it is clear that it is impossible to have both 11; and Jy; both
belong in the basic set since that would imply that the associated x; variable is
simultaneously at its upper and lower bound. The row manipulations taking place in a

pivoting operation modify the columns associated pj; affect py; in identical manners.
Thus it is not necessary to represent both variables in memory since knowledge of one of
the columns implies the same for the other. In practice, an integer array is used to

ascertain which of the variables, Jlj; Or Hi; is currently represented in the tableau. When
a column pertaining to a L;; or Hy; variable is considered during the pivot selection tests,
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it is examined twice, first with the unaltered column and then again with all entries in the
column reversed in sign. Thus an n by n reduction in memory space is realized.

The second stage tackles the Kuhn-Tucker equality constraints. Specifically, a
feasible solution satisfying these equality constraints is sought. In an analogous fashion
to the construction of f; in Eq. (A-8) which was used to obtain a feasible solution for the
imposed constraints, an auxiliary linear cost function is created,

n-m3

fxr = D (2xT); (A-15)

i=1

As before, this is expressed in terms of the non-basic variables by substituting for the
ZKkT- If one examines the tableau, Table A-1, and the expression for f; in Eq. (A-8), it is
seen that the constant term, fzg, is simply the column sum of the left-most column with
the summation range extending over thosec rows corresponding to the z2i and z3;.
Similarly, the factor associated with a given non-basic variable, x;, in the expression for
f, can be obtained simply by summing the entries in the column above it over the same
summation range. Or,

ml+m2+m3
(2);= X2y  G=0,n+ml) (A-16)

i=ml+1

where 3. is the row in the tableau associated with f;, j=0 corresponds to the leftmost
column, i=0 corresponds the row associated with J, and j=n+ml corresponds to the
righmost non-basic variable, in this case (s;)m). The same procedure is carried out for
the fxT with the row entries being computed as a simple sum of the associated column
entries. The range of summation now extends over the n-m3 rows identified with the
transformed Kuhn-Tucker conditions (i.e., subsequent to the elimination of m3 rows

when solving for the unbounded Ayx). Furthermore, the column range, j, is extended to
n+ml+n+m; so that these sums are also formed for the remaining n+m; Lagrange
multipliers which at this point are still non-basic variables set to their initial zero values.

fz = szi + Zb3i — (Z[Az] + 2[A3]] AZ(_ + ZSZi (A-17)
m2 m3 m2 m3 m2

At the end of the first stage, the tableau has the form:

Table A-3
Non-basic entries Li m U Basic Variables
of {AX,s51.5]
b i A 7 [0] [0] 0] Basic entries
! Al . of {AX,51.5)
2 2 '
b3 7 _A3 I
c’ Q}L R -T T L ZKT
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txTo m+np-m3 m+n-m3 | m+n-m3 m+n-m3
Qg 2Ryl 2 Ty 2 Ty
k=m+1 k=m+l k=m+1 k=m+1

where (+)* denotes that the entries have been altered due to row manipulations during
pivoting. Here, the scalar,

m+n-m3

frro= Y, Sk (A-18)

k=m+1

The second stage then is concerned with minimizing fxT. If the optimal value of fx1=0,
then by implication all the zg1=0 thus verifying that a feasible solution to the complete
problem of imposed constraints plus the Kuhn-Tucker conditions, or equivalently, the
optimizing vector of the QP problem, has been found. This presumes that the
orthogonality conditions, Egs. (A-10b,c), are maintained throughout, and this must be
explicitly enforced in the second phase. To this end, a battery of logical tests is
conducted during selection of the pivot column. For each candidate column, the
associated non-basic variable together with its set of conjugate variables (i.e. the second
in the pair of variables that define the orthogonality requirement) is found. For any x; the

set of conjugate variables is p1j and paj; for slack variable, sjj or s2;, the conjugate

variable is the corresponding entry of Aj; etc. The bookkeeping is somewhat involved
due to the compact storage of the simplex tableau and the implicit incorporation of lower
and upper bounds upon the variables, but in essence the associated conjugate variables
are tested for membership in the basic set. If the membership structure is found to be
incompatible with the orthogonality stipulations, Egs. (A-10b,c), then that column is
skipped. If no column can be found that both satisfies the orthogonality conditions and
decreases the auxiliary cost, fxT, then the possibility of a non-basic variable pivoting with
one of its own conjugate variables is examined. For example, one could pivot the non-

basic xj component with its corresponding j11; assuming that Ji1; presently belongs to the
basic set. Such situations arise rarely in practice, and pivot columns satisfying the
orthogonality conditions are usually available.

118



10.

11.

12.

13.

14.

REFERENCES

Landgrebe, A.J.: "An Analytical Method for Predicting Rotor Wake Geometry."
Journal of the American Helicopter Society, Vol. 14, No. 4, October 1969.

Kocurek, J.D. and Tangler, J.L.: "A Prescribed Wake Lifting Surface Analysis.”
Joumal of the American Helicopter Society, Vol. 22, No. 1, January 1977.

Egolf, T.A. and Landgrebe, A.J.: "Helicopter Wake Geometry and Its Influence in
Forward Flight.” NASA CR 3726, October 1983.

Quackenbush, T.R., Wachspress, D.A., Kaufman, A.E., and Bliss, D.B.:
"Performance Optimization for Rotors in Hover and Axial Flight." Continuum
Dynamics, Inc. Report No. 88-10, November 1988. ‘

Quackenbush, T.R., Wachspress, D.A., and Kaufman, A.E.: "Optimization of
Rotor Performance in Hover Using a Free Wake Analysis." Journal of Aircraft,

Vol. 28, No. 3, March 1991. pp. 200-207.

Felker, F.F., Quackenbush, T.R., Bliss, D.B., and Light, J.L.: "Comparisons of
Predicted and Measured Rotor Performance in Hover Using a New Free Wake
Analysis." Proceedings of the 44th Annual Forum of the American Helicopter

Society, June 1988.

Shanley, J.P., Moffitt, R.C., and Davis, S.J.: "Systematic Correlation of the EHPIC
Hover Analysis." Proceedings of the 46th Annual Forum of the American
Helicopter Society, May 1990.

Quackenbush, T.R., Bliss, D.B., and Wachspress, D.A.: "New Free-Wake
Analysis of Rotorcraft Hover Performance Using Influence Coefficients.” Journal
of Aircraft, Vol. 26, No. 12, December 1989. pp. 1090-1097.

Quackenbush, T.R., Bliss, D.B., Wachspress, D.A., and Ong, C.C.: "Free Wake
Analysis of Hover Performance Using a New Influence Coefficient Method.”
NASA CR 4309, July 1990.

Quackenbush, T.R. and Wachspress, D.A.: "Enhancements to a New Free Wake
Hover Analysis.” NASA CR 177523, April 1989.

Light, J.S.: "Tip Vortex Geometry of a Hovering Helicopter Rotor in Ground
Effect." Proceedings of the 45th Annual Forum of the American Helicopter
Society, May 1989. pp. 551-562.

Wachspress, D.A., Quackenbush, T.R., and Boschitsch, A.H.: "EHPIC/HERO
(Mod 0.0) User's Manual." Continuum Dynamics, Inc. Technical Note No. 92-05,
April 1992.

Miura, H.: "Applications of Numerical Optimization Methods to Helicopter
Design Problems - A Survey." Vertica ,Vol. 9, No. 2, 1985. pp. 141-154,

Sobieszczanski-Sobieski, J.: “"Sensitivity Analysis and Multidisciplinary
Optimization for Aircraft Design: Recent Advances and Results.” Journal of
Aircraft, Vol. 27, No. 12, December 1990. pp. 993-1001.

119



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Moffitt, R.C. and Bissell, J.R.: "Theory and Application of Optimum Airloads to
Rotors in Hover and Forward Flight." Proceedings of the 38th Annual Forum of
the American Helicopter Society, May 1982. pp. 1-12.

Nagashima, T. and Nakaniski, K.: "Optimum Performance and Wake Geometry of
a Coaxial Rotor in Hover." Vertica, Vol. 7, No. 3, 1983. pp. 225-239,

Walsh, J.L., Bingham, G.J., and Riley, M.F.: "Optimization Methods Applied to
the Aerodynamic Design of Helicopter Rotor Blades." Journal of the American
Helicopter Society, Vol. 32, No. 4, Oct. 1987.

Chattopadhyay, A., Walsh, J.L., and Riley, M.F.: "Integrated Aerodynamic
Load/Dynamic Optimization of Helicopter Rotor Blades." Journal of Aircraft, Vol.

28, No. 1, January 1991. pp. 58-65.

Mantay, W.R. and Adelman, H.A.: "Status of Research on Multdisciplinary
Rotorcraft Optimization at the Langley Research Center." Proceedings of the 46th
Annual Forum of the American Helicopter Society, May 1990. pp. 471-481.

Chattopadhyay, A. and McCarthy, T.R.: "Optimum Design of Helicopter Rotor
Blades with Multidisciplinary Couplings.”" AIAA Paper 92-0214, January 1992.

Scully, M.P.: "Computation of Helicopter Rotor Wake Geometry and Its Influence
on Rotor Harmonic Airloads.” MIT ASRL TR 178-1, March 1975.

Landgrebe, A.J.: "An Analytical and Experimental Investigation of Helicopter
Rotor Hover Performance and Wake Geometry Characteristics.” USAAMRDL TR

71-24, June 1971.

Bliss, D. B., Teske, M.E., and Quackenbush, T.R.: "A New Methodology for Free
Wake Analyses Using Curved Vortex Elements.” NASA CR 3958, December

1987.

Margason, R.J. and Lamar, JE.: "Vortex Latticc FORTRAN Program for
Estimating Subsonic Aerodynamic Characteristics of Complex Planforms." NASA

TN-D 6142, February 1971.

Chiu, Y.D.: "Convergence of Discrete-Vortex Induced-Flow Calculations by
Optimum Choice of Mesh." Ph.D. Thesis, Georgia Institute of Technology, School
of Aerospace Engineering, August 1988.

Hough, G.R.: "Lattice Arrangement of Rapid Convergence.” Vortex Lattice
Utilization, NASA SP-405, May 1976. pp. 325-342

Felker, F.F., Signor, D.B., Young, L.A., and Betzina, M.D.: "Performance and
Loads Data From a Hover Test of a 0.658-Scale V-22 Rotor and Wing." NASA
TM 89419, April 1987.

Bliss, D.B. and Miller, W.0O.: "Efficient Free Wake Calculations Using
Analytical/Numerical Matching and Far Ficld Linearization." Proceedings of the
45th Annual Forum of the American Helicopter Society, May 1989. pp. 253-263

120



29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Bliss, D. B. and Miller, W.0.: "Vortex Filament Calculatons by Analytical/
Numerical Matching with Comparison to Other Methods.” AIAA Paper 89-1962,
presented at the AIAA 20th Fluid Mechanics Conference, June 1989.

Bliss, D.B.: "Prediction of Tip Vortex Self-Induced Motion Parameters in Terms
of Rotor Blade Loading." Proceedings of the American Helicopter Society
National Specialists' Meeting on Acrodynamics and Aeroacoustics, February 1987.

Johnson, W.: "A Lifting-Surface Solution for Vortex-Induced Airloads." AIAA
Journal, Vol. 9, No. 4, April 1971. pp. 689-695.

Djojodihardjo, R.H. and Widnall, S.E.: "A Numerical Method for the Calculation
of Nonlinear, Unsteady Lifting Potential Flow Problems.” AIAA Joumnal,
Vol. 7:2001-2009, 1969. No. 10, October 1969, pp. 2001-2009

Magnus, A.E. and Epton, M.A.: "PANAIR: A Computer Program for Predicting
Subsonic or Supersonic Linear Potential Flows about Arbitrary Bodies." NASA-

CR-3251, November 1981.

Ueda, T. and Dowell, E.H.: "A New Solution Method for Lifting Surfaces in
Subsonic Flow." AIAA Journal, Vol. 20, No. 3, March 1982. pp. 348-355.

Biggers, J.C., Lee, A., Orloff, K.L., and Lemmer,. O.J.: "Laser Velocimeter
Measurements of Two-Bladed Helicopter Rotor Flow Fields." NASA TM X-

73238, May 1977.

Chigier, N.A. and Corsiglia, V.R.: "Tip Vortices; Velocity Distributions.” NASA
TM X-62, September 1971. NASA TM X-62087.

Norman, T.R. and Light, J.S.: "Rotor Tip Vortex Geometry Measurements Using
the Wide-Field Shadowgraph Technique." Journal of the American Helicopter
Society, Vol. 32, No. 2, April 1987.

Nikolsky, A.A. and Gray, R.B.: "An Aerodynamic Analysis of a Single-Bladed
Rotor in Hovering and Low-Speed Forward Flight as Determined from Smoke
Studies of the Vorticity Distribution in the Wake." Princeton University
Aeronautical Engineering Department Report No. 356, September 1956.

Tung, C. and Branum, L.: "Model Tilt-Rotor Hover Performance and Surface
Pressure Measurement." Proceedings of the 46th Annual Forum of the American
Helicopter Society, May 1990. pp. 785-796.

Bilanin, A.J. and Donaldson, C. duP.: "Estimation of Velocities and Roll-Up in

Aircraft Vortex Wakes.” Joumnal of Aircraft, Vol. 12, No. 7., July 1975. pp. 578-585.

Strawn, R.C.: "Wing Tip Vortex Calculations with an Unstructured Adaptive-Grid
Euler Solver." Proceedings of the 47th Annual Forum of the American Helicopter
Society, May 1991. pp. 65-76.

Kandil, O.A., Wong, T.-C., and Liu, C.H.: "Analysis and Computation of Trailing

Vortices and Their Hazardous Effects.” Proceedings of the FAA International
Wake Vortex Symposium, Washington, D.C., October 1991.

121



43.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Hackbusch, W.: "Introduction to Multi-grid Methods for the Numerical Solution
of Boundary Value Problems." Computational Methods for Turbulent, Transonic,
and Viscous Flows (ed., Essers, J.A.), Springer-Verlag, New York, 1981. pp. 45-92.

Mendenhall, M.R., Spangler, S.B. and Perkins, S.C., Jr.: "Vortex Shedding from
Circular and Non-Circular Bodies at High Angle of Attack." AIAA-79-0026,

1979.

Felker, E.F., Betzina, M.D., and Signor, D.B.: "Performance and Loads Data from
A Hover Test of a Full-Scale XV-15 Rotor.” NASA TM 86833, 1985.

Spalart, P.R.: "Numerical Simulation of Separated Flows." Ph.D. Thesis, Stanford
University, 1982.

Bryson, A.E.: "Symmetric Vortex Separation on Circular Cylinders and Cones."
Journal of Applied Mechanics, Series E, Vol. 26, No. 4, Dec. 1959. pp. 643-648.

Pullin, D.: "The Large-Scale Structure of Unsteady Self-Similar Rolled-Up Vortex
Sheets.” Journal of Fluid Mechanics, Vol. 88, October 13, 1978. pp. 401-430.

Celi, R. and Friedmann, P.P.: "Aeroelastic Modeling of Swept Tip Rotor Blades
Using Finite Elements." Journal of the American Helicopter Society, Vol. 33,
No. 2, April 1988.

A.C. Hindmarsh: "Banded Linear Systems with Pivoting.” Lawrence Livermore
Laboratory Report UCID-30045, 1972.

G.N. Vanderplaats: Numerical Optimization Techniques for Engineering Design:
With Applications, McGraw-Hill Book Co., New York, 1984.

Press, W.H., Brian, B.P., Teukolsky, S.A., and Vetterling, W.T.: Numerical
Recipes, Cambridge University Press, 1986.

Topping, B.H.V. and Robinson, D.J.: "Selecting Nonlinear Optimization
Techniques for Structural Design." Engineering Computation, Vol. 1, September
1984. .

Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods,
Academic Press, New York, 1982.

Powell, M.J.D.: "The Convergence of Variable Metric Methods for Nonlinearly
Constrained Optimization Calculaton." Nonlinear Programming 3, (eds.,
Mangasarian, O.L., Meyer, R. and Robinson, S.), Academic Press, New York,
1978.

Luenberger, D.G.: Introduction to Linear and Nonlinear Programming, Addison-
Wesley Publishing Company, Reading, Massaachusetts, 1973.

Dhingra, A.X., Rao, S.S., and Miura, H.: "Multiobjective Decision Making in a
Fuzzy Environment with Applications to Helicopter Design." AIAA Journal,
Vol. 28 , No. 4, April 1990. pp. 703-710.

Kiinzi, H.P., Tzschach, H.G., and Zehnder, C.A.: Numerical Methods of
Mathematical Optimization, Academic Press, New York, 1971.

122



59.

61.

62.

63.

65.

66.

67.

Wolfe, P.: "Methods of Nonlinear Programming." Recent Advances in
Mathematical Programming, (eds., Graves, R.L and Wolfe, P.), McGraw-Hill,

New York, 1963.

Tung, C. and Ramachandran, K.: "Hover Performance Analysis of Advanced Rotor
Blades." Proceedings of the 48th Annual Forum of the American Helicopter

Society, June 1992. pp. 1367-1384.

Carpenter, P.J.: "Lift and Profile-Drag Characteristics of an NACA 0012 Airfoil
Section as Derived from Measured Helicopter-Rotor Hovering Performance.”
NACA TN-4357, September 1958.

Davenport, F.J., Magee, J.P,, and Austin, EE.. "Analysis of Propeller and Rotor
Performance in Static and Axial Flight by an Explicit Vortex Influence Technique.”
The Boeing Co. Vertol Division Report No. R-372, December 1967.

Lorber, P.F., Stauter, R.C., Pollack, M.J., and Landgrebe, A.J.: "A Comprehensive
Hover Test of the Airloads and Airflow of an Extensively Instrumented Model
Helicopter Rotor: Volume I - Rotor Airloads and Performance.” USAAVSCOM
TR 91-D-16A, October 1991.

Lorber, P.E., Stauter, R.C., Pollack, M.J., and Landgrebe, A.J.: "A Comprehensive
Hover Test of the Airloads and Airflow of an Extensively Instrumented Model
Helicopter Rotor: Volume IV - Correlation of a Lifting Line and a Lifting Surface
Method With Model Rotor Hover Data." USAAVSCOM TR 91-D-16D, November

1991.

Lorber, P.F., Stauter, R.C., Pollack, M.J., and Landgrebe, A.J.: "A Comprehensive
Hover Test of the Airloads and Airflow of an Extensively Instrumented Model
Helicopter Rotor: Volume V - Supplemental Graphical and Tabulated Data."
USAAVSCOM TR 91-D-16E, October 1991.

Felker, F.F.: "Results From a Test of a 2/3-Scale V-22 Rotor and Wing in the 40-
by 80-Foot Wind Tunnel.” Proceedings of the 47th Annual Forum of the American
Helicopter Society, May 1991.

Felker, F.: Private Communication, February 1992.

123



REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this coliection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

pathering and maintaining the data needed, and ¢

g and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, Including suggestions for reduclna this burdan, to Washington Headquanters Services, Directorate for information Operations and Reponts, 1215 Jeferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Managemant and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1.

AGENCY USE ONLY (Leave blank) 2, REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 1993 Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Rotor Design Optimization Using a Free Wake Analysis
6. AUTHOR(S) 505-59-36
Todd R. Quackenbush, Alexander H. Boschitsch,
Daniel A. Wachspress, and Kiat Chua
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Continuum Dynamics, Inc.
P.O. Box 3073 A-93050
Princeton, NJ 08543
9. 10. SPONSORING/MONITORING

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
- : AGENCY REPORT NUMBER

National Aeronautics and Space Administration

Washington, DC 20546-0001 NASA CR-177612

NAS2-13092

11. SUPPLEMENTARY NOTES

Point of Contact: Jeffrey Light, Ames Research Center, MS T-042, Moffett Field, CA 94035-1000;
(415) 604-4881

12s. DISTRIBUTION/AVAILABILITY STATEMENT

12b. DISTRIBUTION CODE

Unclassified — Unlimited
Subject Category 02

e ——
13. ABSTRACT (Maximum 200 words)

The aim of this effort has been to develop a comprehensive performance optimization capability for tiltrotor and
helicopter blades. The analysis incorporates the validated EHPIC (Evaluation of Hover Performance using Influence
Coefficients) model of helicopter rotor acrodynamics within a general linear/quadratic programming algorithm that
allows optimization using a variety of objective functions involving the performance. The resulting computer code,
EHPIC/HERO (HElicopter Rotor Optimization), improves upon several features of the previous EHPIC performance
model and allows optimization utilizing a wide spectrum of design variables, including twist, chord, anhedral, and
sweep. The new analysis supports optimization of a variety of objective functions, including weighted measures of
rotor thrust, power and propulsive efficiency. The fundamental strength of the approach is that an efficient search for
improved versions of the baseline design can be carried out while retaining the demonstrated accuracy inherent in the
EHPIC free wake/vortex lattice performance analysis. Sample problems are described that demonstrate the success
of this approach for several representative rotor configurations in hover and axial flight. The present report also
discusses features that have been introduced to convert earlier demonstration versions of this analysis into a generally
applicable tool for researchers and designers.

14. SUBJECT TERMS

15. NUMBER OF PAGES

Design optimization, Rotor performance, Free wake analysis I 132
16. PRICE CODE
A07

17. SECURITY CLASSIFICATIBN

19, SECURITY CLASSIFICATION
OF ABSTRACT

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

OF REPORT
Unclassified

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

20. LIMITATION OF ABSTRACT




